
376 International IC – China • Conference Proceedings

Abstract
This paper describes the techniques used in the non-linear
dequantization process of MP3 (MPEG audio, Layer III)
decoding, with Motorola Star*Core DSP (MSC8101). The
method introduced here is more than five times faster than
calling traditional mathematics library, yet achieves a high level
of accuracy that conforms to the ISO/IEC 13818-4 standard
[2]. Memory consumption of this method is considerably low
and is very suitable for DSP implementation of the MP3
decoder in real-time.

1.0 Introduction
MPEG-1 (Moving Pictures Experts Group) is a standard for
compressing digital video and audio, at a combined bit-rate of
1.5Mbit/sec. The standard is divided into several parts and the
third part (11172-3) specifies the standard for audio compres-
sion [1]. The audio compression standard consists of three lay-
ers with different complexity and performance, named as Layer
I, II and III. The Layer III standard (usually referred to as
“MP3”), is the most complex among the three layers. Like
Layer I & II, layer III makes use of “Sub-band Synthesis” for
transforming audio signal. On top of it, it introduces Huffman
coding to reduce the bit-rate of audio frames and also use non-
linear quantization to improve the sound quality. DSP imple-
mentation of MP3 player has been wildly adopted in applica-
tions such as exchanging music in internet, hand-held music
players, PDAs, Hi-Fi and transportation audio systems nowa-
days. In order to implement the MP3 in real-time running
simultanously with other applications, a powerful DSP has to
be used.

The StarCore 140 in Slide 4 is a low cost, low power, high
performance, high flexibility programmable general purpose
fixed-point DSP core with the 3rd generation DSP Archnitecture
that efficiently deploys a novel Variable Length Execution Set
(VLES) execution model utilizing maximum parallelism by
allowing multiple Data and Address ALUs to execute multiple
operations in a single clock cycle. A Data Arithmetic Logic
Unit (DALU) performs arithmetic and logical operations on
data operands in the Star*Core 140 core. The Star*Core 140
has 4 Arithmetic & Logic units in the DALU. Four instances
of a single-cycle Multiplier-Accumulator (MAC) Unit

A full-compliance MP3

decoder using DSP

Lawrence K. W. Law, Ph.D.
Marketing Manager
Wireless Infrastructure Systems Division
Networking & Computing Systems Group, Asia
Motorola Semiconductors Hong Kong Ltd

with automatic saturation capability and four instances of a Bit
Field Unit (BFU), each with a 40-bit barrel shifter capable of
executing a variety of single-bit and multi-bit logic and shift
operations.

2.0 MP3 Decoding Algorithm
Slide 2 shows the outline of MP3 decoding process. After seek-
ing the “Sync Word” (which identifies the start of frame) and
reading the audio frame header, The decoder should first fetches
in the “Side Information”, which contain information about
audio block type, Huffman tables, gain and scale factors. After
reading the scale factors of different scale-factor-bands, the
decoder decodes the frequency samples using the Huffman de-
coding scheme. Then, the frequency samples are dequantized.
Unlike Layer I & II, the dequanzition process uses non-linear
scale. After that, the samples of both channels undergoes stereo
processing (both Middle-Side-Stereo & Intensity-Stereo),
Antialiasing. And after the IMDCT process, Sub-band Synthe-
sis process is applied to the sub-band samples to yield the PCM
audio signal.

The most computational intensive parts are the “Sub-band
Synthesis”, “IMDCT”, “Dequantization” and the “Huffman
Decoding”. Fast algorithms for “Sub-band Synthesis” and
“IMDCT” has been discussed in many papers [3]. In this paper,
fast method for sample dequantization will be presented.

3.0 Sample Dequantization
The dequantization process of MP3 decoding can be written
as:

where isi is the input sample and xr i is the dequantized sample.
The problem is “How to calculate x4/3? (where x is an integer)”.
Although mathematics libraries are available to different kinds
of DSP, there are simply too time-consuming. Even using opti-
mized assembly code, the power() mathematics routine takes
about 115 cycles per calculation. For a stereo music stream at
48kHz, only this part consumes more than 11 MIPS. Hence
this method is not suitable for real-time DSP implementation.

An alternative is to use pure table lookup. As the range of isi

is bounded to range 0..8207, by storing 8207 entries (of x4/3)

Kenneth K. C. Lee
Department of Computer Science
City University of Hong Kong

International IC – China • Conference Proceedings 377

into memory, one can get the output sample easily. However,
the memory consumption is huge. Assume each entry is stored
in 32 bits. The whole table takes about 33kbytes of memory.
Even 24-bit word is used, the table is still very large (25 kbytes).

Here, we use a new method to solve the problem. What’s
difficult about the formula is that the “power” term (4/3) is not
integer. If the power is integer, we can calculate it easily by
successive multiplication. The main idea of our method is to
use polynomial of x to estimate the curve of y=x4/3

So, the program only need to store the coefficients a
0
, a

1
.....a

n
,

instead of storing the whole 8207 entries of the curve. The or-
der of polynomial (number of terms) depends on the required
accuracy. The greater the number of terms, the more accurate is
the estimation.

To use a single curve for estimation is difficult, so, the curve
is broken down into regions and each part is estimated indi-
vidually (shown in Slide 11). Dividing the curve into regions
is advantageous. First of all, one can keep the estimation error
low by setting some threshold value: Observe the estimation
error along the x-axis, (from 0 towards 8207), if the estimation
error gradually increases. We can stop the current estimation
curve and use a new estimation curve for the remaining part of
the curve (Slide 12). This method allows trade-off between table
size and the estimation error.

Also, dividing the curve into regions enables uneven range
size. Observed that when x is small, the curve is more “curved”
and the curve is more “linear” when x is large. So, when x is
small, one can divide the curve more precisely (e.g. use range
size of 32); and when x is large, one can use larger range size
(e.g. use size of 512).

Another advantage of dividing the curve is that one can use
polynomials of different orders to estimate different parts of
the curve. For example, when x is large, the error percentage is
relatively small, so, one can use a polynomial of order 2
(a0+a1x+a2x2) to estimate that part. When x is small and the
curve is more “curved”, one can use polynomial of 3rd or 4th

order. This makes our method very flexible, one can add in
new polynomial terms or new regions if more precision is
needed. And one can delete terms or regions if the memory
constraint is tight (with the cost of some precision).

4.0 Range Identification
So, the method for getting x4/3 is straight forward. After fetch

in input x, the program find whether x is in region 0, 1, 2, or
...etc. After identifying the region of the input x, use the poly-
nomial of that range to estimate x4/3. The question is how to
break down the curve and how to identify the region of x. A
simple approach is to set arbitrary upper bound and lower bound
and use a series of if-then-else to check the range. For example,
we break the curve to range: (0-1000), (1001-2000), (2001-
3000),etc. Then the pseudo code would be like:

If (0<x<1000)
{use polynomial1}

ElseIf (1001<x<2000)
{use polynomial2}
ElseIf (2001<x<3000)
{use polynomial3}
Else if etc.

The major problem is that the code contains a large number
of if-then-else. In assembly language, this is equivalent to a lot
of compare and jump. Each jump instruction takes about 3 to 4
cycles, which is more expensive than normal arithmetic opera-
tions. (which usually uses 1 cycle only). Even worse, the greater
the number of regions, the greater the number of if-then-else
and the worse the performance.

Here we propose a better method: which is, to use the range
boundary that is aligned to power of 2 (2^n, where n=5..10).
(Slide 15 shows the range used in our prototype of MP3 de-
coder)

Note that in each region, all number has the same number
of leading zeroes. (when presented as binary number). So, in
the implementation on Motorola Star*Core DSP, one can use
the CLB (Count Leading Bits) instruction to identify the range
of input x. Many other DSP, such as the DSP563xx family should
have similar instruction for counting bits. The advantage of this
method is fast and direct. Only 2 cycles, we can find the range
where the input x is located. Another advantage is that this
method uses “Unven Division”. When x is small (0-32), the
range size is small (32); when x is large (4096-8191), the range
size is large (4096). This allows a good banlance between the
table size and the percentage error. Figure 7 shows the table
used in one of our implementation. Note that when x is small,
the range size is smaller and the “order” of polynomial is higher.
The reason is mentioned before. Using the table in Figure 7,
the mean percentage error is about 0.0295%.

5.0 Accuracy and Performance
ISO/IEC 13818-4 standard states the accuracy requirement for
limited-accuracy and fully-accurate MPEG Audio decoders. To
be an full-accurate decoder, the RMS (Root Mean Square) be-
tween the reference and the decoded signal should be less than
2-15/sqrt(12) relative to full-scale, when decoding a given “sine-
sweep”. Also, the maximum absolute different should be at most
2-14 relative to full-scale. For a full-scale of 64k (16-bit out-
put), the Mean RMS should be less than 0.577, and the maxi-
mum absolute difference should be no more than 4. Using our
method, the RMS is 0.880 and the maximum difference is 4.949.
Which is much better than limited-accuracy decoders and come
very close to the fully-accurate standard. (Figure 8). Also, the
method is very efficient. It takes a maximum of 22 cycles to
calculate x4/3, which is 5 times faster than calling mathematics
library (115 cycles). There is only 31 (3*9+4) entries in the
lookup table (of coefficients), which is much smaller than tra-
ditional table lookup (8207 entries).

6.0 Higher Accuracy
In the method described above, the index for table-lookup is
obtained by counting leading zeroes of x (yields 10 regions).
Actually, the index can be derived by other methods, say, by
counting leading zeros of functions or polynomial consisting x.
For example, in actual implementation, our decoder counts the
leading zeros of x2. (yields 20 regions).

The reason for using x2 is that: In a 32-bit word, x, the num-
ber of leading zero = x have range 0..8207, hence log2(x) has
range 0..13. There are at most 14 ranges

x2 have range 0..67354849, log2(x2) has range 0..26. There
are at most 27 ranges

Hence, by squaring x, the number of region is nearly
doubled. This results in a more accurate curve (and larger table
size). Figure 9 compares the two partitioning methods. Note
that when using x2, the curve is more precisely divided and

378 International IC – China • Conference Proceedings

hence more accurate. Figure 10 shows the actual table used.
Using the new method, the mean percentage error is reduced

to 0.0047%. The new function still uses 22 cycles only (be-
cause when evaluating polynomial, x2 is calculated anyway).
The new table uses 61 entries of coefficients, which is still
smaller than pure table lookup (8207 entries).

Using this implementation, the Mean RMS is 0.356 and the
Maximum difference is 1.680, which is better than the fully-
accurate conformance standard proposed by ISO. As a refer-
ence, we also implement another version, using a full lookup
table of 8207 entries. The achieved RMS is 0.326 and the Maxi-
mum difference is 1.086. It shows that the estimation method is
highly accurate and close to optimum.

7.0 Hybrid Scheme
As mentioned above, this method is a flexible, many other par-
tition methods are possible. Look at the initial partition method
(by counting leading 0 of x), when x is large, the range size is
large. So, for a few applications, it may find the accuracy of
those regions not high enough.

On the contrary, for the partitioning method that counts lead-
ing 0 of x2. When x is small, the range size is very small. The
high accuracy of those regions may be unnecessary for some
applications. So, one can combine both schemes to yield a hy-
brid scheme (Slide 22).

When x is small (e.g. x<1024), the range is partitioned ac-
cording to leading 0 bits of x;

When x is large (x>1024), the range is partitioned accord-
ing to leading 0 bits of x2.

With this arrangement, the range size will not be too small
(unnecessarily accurate) for small x and the range will not be
too large (not accurate enough) for large x.. This gives a good
trade-off between table size and accuracy.

References
1. ISO/IEC 11172-3, Information technology - Coding of mov-

ing pictures and associated audio for digital storage media
at up to 1.5Mbit/s. Part 3 - Audio

2. ISO/IEC 13818-4, Information technology - Generic cod-
ing of moving pictures and associated audio. Part 4 - Con-
formance.

3. Tadashi Sakamoto, Maiko Taruli, and Tomohiro Hase, “A
Fast MPEG-Audio Layer III algorithm for 1 32-bit MCU”,
IEEE transactions on consumer electronics, Vol. 45, No.3,
Aug 1999

Authors’ contact details
Lawrence K. W. Law, Ph.D.
Wireless Infrastructure Systems Division
Networking & Computing Systems Group, Asia
Motorola Semiconductors Hong Kong Ltd.
Silicon Harbour Center
2 Dai King Street
Taipo Industrial Estate
Tai Po, New Territories, Hong Kong
Phone: (852) 2666 8961
Fax: (852) 2663 3277
E-mail: R21718@email.mot.com

Kenneth K. C. Lee
Department of Computer Science
City University of Hong Kong

International IC – China • Conference Proceedings 379

Presentation Materials

380 International IC – China • Conference Proceedings

International IC – China • Conference Proceedings 381

382 International IC – China • Conference Proceedings

International IC – China • Conference Proceedings 383

384 International IC – China • Conference Proceedings

International IC – China • Conference Proceedings 385

