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Summary

In this thesis, a time-domain binaural auditory model is developed for the assessment of high

quality coded audio signals.

Traditional objective measurements of sound quality yield misleading results when applied to

psychoacoustic based codecs. Whilst human subjective opinion must be the ultimate arbiter of

perceived sound quality, an objective measurement is sought that accurately predicts human

perception.

The auditory model described in this thesis is designed to match the processing within the

human auditory system as closely as possible. The outer and middle ear transforms are simu-

lated by linear filters; the basilar membrane response is simulated by a bank of amplitude

dependent gammachirp filters, and the compressive action of the inner hair cells is simulated

by an adaptation circuit. The whole model is calibrated using known human performance data.

This monophonic model is used as the basis for a model of binaural hearing. Signals from the

inner hair cell simulation are compared with those from the opposing ear, and an internal

binaural image is formed. Changes in this image are shown to reflect audible changes in the

binaural properties of the sound field. The binaural model predicts binaural masking and lo-

calisation data using a single detection criterion, which suggests that both phenomena may be

due to the same internal process.

Finally, the model is used for audio quality assessment. The monophonic model correctly

predicts human perception for some coded audio extracts, but not all. A specific problem in the

hair cell simulation is identified, and solutions to this problem are suggested. The binaural

model accurately predicts human perception of spatial qualities. In particular, the model can

detect changes to the stereo soundstage within real music stimuli.
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Introduction

For over a century, scientists and engineers have refined the art of sound reproduction.

Throughout this period, the goal has been to increase the fidelity of the reproduced sound to

that of the original event. To this end, each component within the audio reproduction chain has

been extensively perfected. Subjectively, the ideal audio device should have no audible char-

acter of its own, and the audio signal should pass through the device without the addition of

colouration, distortion, or noise.

The success or otherwise in approaching this ideal can be judged by listening to the resulting

sound. However, a rigorous engineering approach requires that the performance of any audio

device must be quantifiable in objective terms. A variety of objective measurements have been

developed, and these quantify the deviation of the device from the stated ideal. Many state-of-

the-art audio devices are so close to perfection that most measurable performance deviations

are below the threshold of audibility, whilst any perceived audible character of the device is

due to some effect which is not yet quantifiable. However, where measured performance devi-

ates significantly from the ideal, such measurable anomalies are audible, and the quantitative

measurement correlates well with human perception.

This correlation between objective and subjective performance is broken by audio codecs. An

audio codec aims to reduce the amount of data that is required to store or transmit an audio

signal. High quality psychoacoustic-based audio codecs achieve this goal by discarding infor-

mation that is inaudible to a human listener. This contradicts the historical notion of an ideal

audio device, which should not alter the audio signal in any manner. Instead, the ideal audio
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codec should change an audio signal as much as possible (by discarding data) without chang-

ing the perception of the audio signal by a human listener.

It is inappropriate to apply existing objective performance measures to audio codecs, as these

measurements merely confirm that the codec has significantly altered the audio signal. Rather

than measuring all the changes introduced by the device, it would be more appropriate to

quantify only the audible changes, whilst ignoring any changes that are inaudible to a human

listener. This may be termed an objective perceptual measurement, and several such measure-

ments have recently been defined.

The present work focuses on some of the areas of human auditory perception that are neglected

within current perceptual measurement algorithms. These areas are temporal masking, spatial

masking, and binaural hearing. By necessity, auditory phenomena that are adequately defined

in existing models are also discussed. Rather than duplicating previous work, a new approach

is tested in this area, whereby the mechanisms within the human auditory system are simulated

directly. This allows the appropriateness of this approach for the assessment of coded audio to

be investigated.

In Chapter 2, the principles of psychoacoustic-based audio codecs are introduced, and the

MPEG-1 series of codecs is described. It is shown that traditional objective audio quality

measurements are inappropriate for the quality assessment of coded audio. It is also demon-

strated that certain other techniques that are often mistakenly used to predict perceived audio

quality will yield misleading results. The definitive arbiter of perceived audio quality must be a

human listener, but subjective opinions are notoriously unreliable. Stringent subjective test

procedures are described that yield reliable, repeatable qualitative judgements. The expense of

implementing these test procedures demonstrates the need for an objective measure that can

match the perceptions of a human listener.

In Chapter 3, the mechanisms within the human auditory system are described in detail. The

path of an audio signal is followed through the human ear, from air-born pressure wave to

internal neural signal. Particular attention is paid to the processes within the human auditory

system that give rise to the measurable performance limits of human hearing.
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In Chapter 4, existing models of human hearing are described and compared. It is shown that

such models can simulate human hearing in both psychoacoustic tests, where the limits of

human hearing are probed, and in the assessment of coded audio signals. The important fea-

tures of those models that give accurate performance are identified for use in the present work.

The areas in which existing models do not match human perception are demonstrated, and

possible solutions are proposed.

In Chapter 5, a time-domain monophonic auditory model is developed. This model is based

upon the processing present within the human auditory system. Some of the features are drawn

from existing psychoacoustic models, whilst others are unique to the present model. The model

is calibrated to match human performance in a wide range of psychoacoustic tests.

In Chapter 6, a psychoacoustic experiment to investigate spatial masking is described. This

experiment investigates the audibility of one sound in the presence of another, where the two

sounds are spatially separate. Existing psychoacoustic data describes this phenomenon for

headphone presented stimuli, and the present experiment extends this knowledge to free-field

stimuli, delivered over loudspeakers. This data is required to calibrate a binaural model capable

of auditioning free-field sounds.

In Chapter 7, a time-domain binaural auditory model is developed. Existing binaural models

are reviewed, and the most successful features of these models are incorporated into the pres-

ent model. Novel features are included to facilitate the processing and comparison of an

arbitrary time-domain input stimulus. The two binaural processing tasks (localisation and

detection) are successfully accounted for by a single detection criterion. This model is cali-

brated to match human perception using the data from the spatial masking experiment.

In Chapter 8, the model is used to assess the quality of coded audio signals. The monophonic

model is shown to operate correctly with transient signals, where many other models fail.

However, problems are revealed during passages of real music, where the sensitivity of the

model is too low. This is traced to an error within the difference detector. A previous version

of the difference detector is shown to predict human performance of real music to a reasonable

degree, but is not able to handle transient signals. A solution to this problem is proposed,

which involves incorporating knowledge gained during the development of the binaural model

into the monophonic model. Finally, the binaural model is used to detect changes in the spatial
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characteristics of a stereo audio signal. The correlation between the prediction of the binaural

model and the perception of a human listener is excellent.

In Chapter 9, the present work is reviewed. The success of the monophonic and binaural mod-

els is critically assessed, and possible future additions to the combined model are discussed.
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2 

Background

2.1 Overview

In this chapter, psychoacoustic-based audio codecs are introduced. The motivation for the

development of these devices is discussed, and several codecs are examined in detail. It is

shown that conventional objective measurements of audio quality are inappropriate for the

assessment of coded audio. A commonly employed alternative is the subjective test, the proce-

dure of which is described herein. It is shown that these tests are expensive and time

consuming, and an accurate objective alternative is sought.

2.2 Audio coding

An audio codec is a device that reduces the amount of data required to represent an audio

signal. In this section, the uses and operations of audio codecs are discussed.

2.2.1 Why reduce the data rate?

The compact disc is now so much a part of everyday life that its technological properties are

taken for granted. Indeed, the 750 MB of audio data contained upon a typical CD seems small

compared to the capacity of current storage devices. Moore’s law [Moore, 1965] predicts that

computational processing power will double every 18 months. Data storage capacity is in-

creasing at a similar rate. The capacity of the humble CD will seem minuscule compared to

next year’s hard disk drives and future optical disc formats.

As the storage capacity of a CD is dwarfed, it is easy to forget that the data requirements of CD

quality digital audio are immense compared to textual media. For example, 30 seconds of CD
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quality digital audio requires the same storage space as the complete works of Shakespeare1.

Though the cost of digital storage falls year on year, the data rate of CD quality audio is still

too high for certain applications. Two pertinent examples are discussed below.

Firstly, audio broadcasters wish to transmit CD quality radio services. However, the radio

spectrum is very crowded, and the proliferation of devices such as mobile phones has made

radio bandwidth an expensive commodity. If CD quality audio were transmitted on existing

analogue FM frequencies, then the frequency range from 88 MHz to 108 MHz would accom-

modate just 12 radio stations. However, analogue transmissions must continue during the

transition to digital broadcasting, so additional bandwidth has been allocated for the digital

services2. The bandwidth allocated for the five BBC national radio stations is 1.54 MHz. After

channel coding, this yields a broadcast data rate of 1.2 Mbps. The data rate of CD is 1.4 Mbps.

Thus, a single CD-quality audio service requires more bandwidth than is available for five

radio stations.

Secondly, computer networks, especially home connections, have failed to increase in capacity

in accordance with Moore’s law. The most common internet connection at home in the UK is

currently the 56k modem. Data transfer rates of approximately 3-4 KB per second (32000 bits

per second) are typical. Thus, for every one second download time, the user can transfer

0.0227 seconds of CD quality audio. Real-time delivery of audio in this manner is impossible.

Distributing albums of music over the internet for off-line listening is similarly impractical,

since a 3 minute pop song requires over two hours download time.

The data rate of CD quality digital audio is too high for both these applications. The data rate

must be reduced in order to make either application practical. In addition, there are other appli-

cations where the data rate of CD quality audio is not prohibitive, but reducing this data rate

would provide economic or functional benefits. For these reasons, it is desirable to reduce the

                                                  

1 The complete works of Shakespeare in ASCII Plain text format [Farrow, WEB] occupy 5219KB, or

44153344 bits. 30 seconds of CD quality audio occupy 44100*16*2*30=42336000 bits. Thus this edition of

the complete works of Shakespeare requires the same binary storage as 31.3 seconds of CD quality digital

audio.
2 In the United Kingdom, 12.5 MHz of Band III spectrum from 217.5 - 230 MHz has been allocated to digital

audio broadcasting. This will accommodate seven data channels. The BBC has been allocated one of these

channels for its national services [Bower, 1998].
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data rate of the audio signal, without compromising the audio quality. However, without so-

phisticated audio codecs, the data rate and audio quality are inextricably linked.

2.2.2 Data reduction by quality reduction

The simplest method of reducing bitrate3 is to reduce the audio quality. Three bitrate reduction

strategies are listed below, together with the quality implications for each strategy.

1. Reduce the sampling rate. This will reduce the frequency range (bandwidth) of the audio

signal.

2. Reduce the bit-depth. This will increase the noise floor of the audio signal.

3. Convert a stereo (2-channel) signal to a mono (1-channel). This will remove all spatial

information from the audio signal.

Table 2.1 lists some common audio formats. These illustrate various combinations of the above

strategies.

The lowest bitrate in Table 2.1 is still too high to transmit in real time over a 56k modem. The

stereo “FM” parameters define a digital channel with comparable quality to existing analogue

                                                  

3 Throughout this discussion, the data rate of an audio signal will be referred to as the “bitrate”. The bitrate is

specified in bits per second (bps), kilobits per second (kbps), or Megabits per second (Mbps). The “k” and

“M” prefixes are used to represent 103 and 106 respectively (SI units) rather than 210 and 220 (commonly used

in PC specifications - see [IEC 60027-2, 2000] for clarification of this issue).

name samples

/ second

PCM bits

/ sample

channels frequency
range / Hz

SNR / dB PCM bit
rate / kbps

DVD 96000 24 6 48 kHz 144 13824

DAT 48000 16 2 24 kHz 96 1536

CD 44100 16 2 22 kHz 96 1411

“FM” 32000 12 2 16 kHz 72 768

“FM” 32000 12 1 16 kHz 72 384

“PC” 22050 8 1 11 kHz 48 176

Phone 8000 8 1 3.4 kHz 48 64

Table 2.1: Linear PCM Bitrates
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FM broadcasts. This quality is acceptable to most consumers, but quality reductions below this

level are perceived and disliked by many listeners.

To reduce the bitrate further, a more sophisticated approach is required.

2.2.3 Lossless and lossy audio codecs

There are two distinct types of audio codec: lossless and lossy. A lossless codec will return an

exact copy of the original digital audio signal following the encode and decode process. A

similar approach is often used within the computer world to reduce the size of documents or

program files, without changing the data. Algorithms suitable for data include “Zip”

[PKWARE, WEB] and “Sit” [Aladdin Systems, WEB]. Algorithms suitable for audio include

“LPAC” [Liebchen, WEB], “Meridian Lossless Packing” (MLP) [Gerzon et al, 1999], and

“Monkey’s Audio” [Ashland, WEB]. Both types of algorithm exploit redundancies within the

data. For example, the waveforms of musical signals are often repetitive in nature. Storing the

difference between each cycle of the waveform, rather than the waveform itself, often requires

fewer bits. In a lossless codec, the difference between the predicted values and the actual

waveform is also stored, so that the waveform can be reconstructed exactly.

A lossless audio codec by definition cannot reduce the audio quality. However, lossless audio

codecs rarely reduce the bitrate to below 50% of the original value. Also, the exact bitrate

reduction is highly signal dependent, so the bitrate of the audio data cannot be guaranteed to

match that of the transmission channel. A burst of white noise (which is random and hence

difficult to predict or compress) may cause the encoded bitrate to match or exceed that of the

original signal.

To reduce the bitrate still further, lossy audio codecs discard audio data. This means that the

decoded waveform is not an exact copy of the original. However, unlike the measures de-

scribed in 2.2.2, lossy audio codecs aim to discard data in a manner that is inaudible, or at least

not objectionable to a human listener. This is possible due to the complex nature of human

hearing. This topic will be discussed in depth in Chapter 3, but here it is sufficient to note that

the presence of one sound can prevent a human listener from hearing a second (quieter) sound.

This phenomenon is illustrated in Figure 2.1 [Rimell, 1996].
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The Minimum Audible Field (MAF) curve represents the threshold of audibility at a given

frequency. Thus, the 40 Hz tone (shown by the dashed arrow on the left Figure 2.1) is inaudi-

ble, because it lies below the MAF curve.

The presence of an audible tone raises the threshold in the spectral region around the tone, and

any additional sound falling below the modified MAF curve will be inaudible. For example,

the dashed arrow in the centre of Figure 2.1 represents a tone of 600 Hz at 20 dB SPL. This

tone would be audible in isolation, but is rendered inaudible (or masked) by the 400 Hz tone at

60 dB. The modified MAF curve is often referred to as the masked threshold.

This concept of masking is used in audio coding. A masked sound can be removed or distorted

by the audio codec without changing the perceived quality of the audio signal. Lossy codecs

which operate in this manner are often referred to as psychoacoustic based codecs, since they

require knowledge of the properties of the human auditory system.

By combining this approach with lossless data reduction, the bitrate may be reduced by 90%

without significantly reducing the perceived audio quality. The result is that a 128 kbps data

Figure 2.1: Spectral masking
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stream, which provides little better than telephone quality without data reduction, can yield

near CD quality with data reduction.

Psychoacoustic based codecs are the most recent generation of lossy audio codecs. Two other

types or families of lossy audio codec exist, and these are mentioned in passing. The first type

aims to discard data without significantly reducing the perceived quality of the audio signal,

but does so without sophisticated knowledge of the human auditory system. The oldest such

codecs are is the A-law and µ-law coding schemes, where non-linear quantisation steps are

used to increase the perceived signal to noise ratio of an 8-bit quantiser.

Another lossy coding mechanism is Adaptive Differential Pulse Code Modulation. In ADPCM,

each sample is predicted from the previous samples, and only the difference between the pre-

diction and the actual value is stored. The decoder follows the same predictive rules as the

encoder, and adds the stored difference to each predicted sample value. Typically, the input

samples are of 8 or 16 bit resolution, and the encoded differences are stored in four bit resolu-

tion, giving 50% or 75% data reduction. This codec is lossless, except where the difference

between the predicted and actual values cannot be represented in four bits. In practice, this

situation is common, but the error is sometimes inaudible, and rarely annoying.

Both the above lossy codecs are designed for use with telephone quality speech signals, though

they can be used with some success to code CD quality music signals. There is a further type

of lossy codec which is designed for speech coding only. Code excited linear predictive coding

employs a code book of excitation signals followed by a linear predictive filter. The output of

the code book and filter is compared with the incoming speech signal, and the code book index

which gives the best match is transmitted. Typically, a single 10-bit index into the code book

can represent 40 incoming samples. This mechanism of lossy coding is used on digital mobile

telephone networks, and the code book is designed to represent speech-like sounds. This ap-

proach is not suitable for high quality music coding, as anyone who has heard music via a

GSM mobile phone can testify. These speech only lossy codecs are not relevant to the present

work, and will not be discussed further.

Psychoacoustic based lossy codecs are most relevant to the present work. The general principle

of operation, and the details of the popular MPEG-1 family of codecs will now be discussed.
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2.2.4 General psychoacoustic coding principles

A generalised psychoacoustic codec may operate as shown in Figure 2.2. In the first stage of

the encoder, the incoming signal is split into several frequency bands by a bank of bandpass

filters. A psychoacoustic model calculates the masked threshold for each frequency band, and

this is converted into a Signal to Mask Ratio (SMR) for each band. Spectral components that

lie above the masked threshold are judged to be audible, and yield a positive Signal to Mask

Ratio. Spectral components that lie below the masked threshold are judged to be inaudible, and

yield a negative Signal to Mask Ratio.

The Signal to Mask ratio directs a bit allocation algorithm. The number of bits allocated to

each frequency band determines the accuracy of the quantiser, which in turn determines the

amount of noise that will be added within each band. The intention is to add noise within

masked spectral regions of the audio signal, but not to change or distort audible spectral com-

ponents.

The amplitude of the signal in each band is normalised to unity before quantisation, and the

scale factor required to revert the signal to its original level is stored, along with the output of

the quantiser. The scale factor and/or quantiser output for a given band may be omitted if the

signal within the frequency band lies well below the masked threshold. The resulting bitrate is

much less than that of the original audio signal.

The decoder reverses this process by generating the signal in each band from the quantised

values, multiplying each signal by the appropriate scale factor, and bandpass filtering the

Figure 2.2: General structure of a psychoacoustic codec
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contents of each band. Finally, outputs of all the frequency bands are summed to yield the final

decoded audio signal. Hopefully, the decoded signal will sound almost identical to the original

signal.

The accuracy of the psychoacoustic model will effect the perceived sound quality of the coded

audio. If the model incorrectly predicts that a spectral component is inaudible, when in reality

is it above the masked threshold, then a human listener will perceive the noise added by the

codec within this frequency region. However, even if the psychoacoustic model perfectly

predicts human perception, the resulting coded audio signal will still contain audible noise if

the bitrate is too low. In a constant bitrate compressed audio signal, only a certain number of

bits are available per second. If the psychoacoustic model calculates a high Signal to Mask

Ratio for many frequency bands, this may instruct the bit allocation model to use more bits

than are available. In this case, the bit allocation model must choose the best compromise to

minimise the audible coding noise, whilst remaining within the allocated bitrate. Variable

bitrate coding overcomes this problem, by allocating the correct number of bits to ensure that

the quantisation noise within each frequency band is below the masked threshold. This will

reduce the bitrate during quiet or easy to encode passages, whilst increasing the bitrate during

loud or complex passages. Variable bitrate encoding is only available within some audio

codecs.

There are two sub-types of psychoacoustic codec: subband codecs and transform codecs.

Subband codecs store the waveform present in each frequency band in a sub-sampled, quan-

tised form. Transform codecs perform a time to frequency transformation (e.g. the Fast Fourier

Transform) upon the original audio signal, or the signal within each frequency band. The

resulting transform coefficients are stored, after quantisation, according to the SMR prediction

of the psychoacoustic model. Transform codecs typically offer greater bitrate reduction than

subband codecs. This is partly due to the higher frequency resolution offered by the transform,

which allows the coding noise to be distributed more accurately according to the masked

threshold. The major disadvantage of transform coding is that all current time to frequency

transformations process the audio in discrete time domain blocks, and this blocking can cause

audible problems. These problems will be discussed in Section 2.2.5.3, with respect to the

MPEG-1 layer III codec.
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2.2.5 MPEG audio codecs

These general principles of audio coding are seen at work in the MPEG-1 family of audio

codecs. The MPEG-1 standard consists of three “layers” of coding, where each layer offers an

increase in complexity, delay, and subjective performance with respect to the previous layer.

The higher layers build on the technology of the lower layers, and a layer n decoder is required

to decode all lower layers. The MPEG-1 standard [ISO/IEC 11172-3, 1993] supports sampling

rates of 32 kHz, 44.1 kHz and 48 kHz, and bitrates between 32 kbps (mono) and 448 kbps

(Layer I stereo). The MPEG-2 standard [ISO/IEC 13818-3, 1998] contains a backwards com-

patible multi-channel codec, and extends the range of allowed bitrates and sampling rates4. A

proprietary extension called MPEG-2.5 [Dietz et al, 1997] is in common use for layer III. The

sampling rates and bitrates are summarised in the following table.

                                                  

4 The MPEG-2 standard also defines a non-backwards compatible codec known as MPEG-2 AAC (Advanced

Audio Coding). This section of the standard was finalised some years after layers I, II, and III. It includes

several refinements that improve coding efficiency (most notably temporal noise shaping), but the general

coding principles are very similar to MPEG-1 layer III. Further details can be found in the standards docu-

ment and an excellent description appears in [Bosi et al, 1997].

codec sampling rates

/ kHz

allowed bitrates / kbps

MPEG-1

layer I 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448

layer II 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384

layer III

32, 44.1, 48

32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320

MPEG-2

layer I 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256

layer II 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160

layer III

16, 22.05, 24

8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160

MPEG-2.5

layer III
8, 11.025, 12

8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160

Table 2.2: Allowed bitrates in the MPEG audio coding standards
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A review of the MPEG standards for audio coding is found in [Brandenburg and Bosi, 1997],

and a clear description of layer III and AAC coding is contained in [Brandenburg, 1999]. Parts

of the following explanation are drawn from [Hollier, 1996].

2.2.5.1 MPEG-1 layer I audio coding

The structure of the MPEG-1 layers I and II encoder is shown in Figure 2.3.

The operation of the layer I encoder is as follows. All references to time and frequency assume

48 kHz sampling.

1. The analysis filterbank splits the incoming audio signal into 32 spectral bands. The filters

are linearly spaced, each having a bandwidth of 750 Hz.

2. The samples in each band are critically decimated, and split into blocks of 12 decimated

samples. Scalefactors are calculated which normalise the amplitude of the maximum sam-

ple in each band to unity.

3. In a parallel process, the signal is windowed, and a 512-point FFT is performed, to calcu-

late the spectrum of the current audio block.

Figure 2.3: Structure of MPEG-1 audio encoder and decoder, Layers I and II
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4. The psychoacoustic model calculates the masked threshold from the spectrum of the

current block. This is transformed into a Signal to Masker Ratio for each band.

5. The dynamic bit and scalefactor allocator selects one of 15 possible quantisers for each

band, based upon the available bitrate, the scalefactor, and the masking information. The

aim is to meet the bitrate requirements whilst masking the coding noise as much as possi-

ble.

6. The scaler and quantiser acts as instructed by the allocator, to scale and quantise each

block of 12 samples.

7. Finally, the quantised samples, scalefactors, and control information are multiplexed

together for transmission or storage.

The decoder unpacks this information, scales and interpolates the quantised samples as in-

structed via the control information, and passes the 32 bands through a synthesis filter to

generate PCM audio samples. The decoder does not require a psychoacoustic model, so de-

coder complexity is reduced compared to the encoder. This is useful for broadcast applications,

where a single (expensive) encoder must transmit to thousands of (inexpensive) decoders.

The decoder is specified exactly by the MPEG standard, but the encoder can use any coding

strategy that yields a valid bitstream. For example, the psychoacoustic model may be arbitrar-

ily complex (or non-existent if encoding speed is the only concern). In theory, this allows

future developments in psychoacoustic knowledge to be incorporated into the encoder, without

breaking compatibility with existing decoders. In practice, the fixed choice of filterbank pa-

rameters limits the fine-tuning that may be carried out.

2.2.5.2 MPEG-1 layer II

The layer II codec operates in a similar manner to layer I, but achieves higher audio quality at a

given bitrate via the following modifications.

1. The 512-point FFT is replaced by a 1024-point FFT. This increases the frequency resolu-

tion of the masking calculation, at the expense of increasing the encoder delay.

2. The similarity between adjacent scalefactors in adjacent blocks is exploited, thus reducing

the amount of control information that must be transmitted.

3. More accurate (smaller stepped) quantisers are made available.

MPEG-1 layer II coding is used by Digital Audio Broadcasting within the UK and much of the

world (apart from America). It achieves near CD-quality at around 256 kbps stereo.
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2.2.5.3 MPEG-1 layer III

The layer III codec is significantly more complex than the lower layers. It uses both subband

and transform coding, and is the only layer with mandatory support for variable bitrate coding.

The layer III encoder is shown in Figure 2.4.

Each of the 32 frequency bands is sub-divided by a 6-point or 18-point Modified Discrete

Cosine Transform. This gives a possible frequency resolution of up to 42 Hz, compared to

750 Hz for layers I and II. The layer III codec switches between the two possible MDCT

lengths (often referred to as short and long blocks) depending on the input signal. This strategy

is useful because, after quantisation of the coefficients, the temporal structure of the audio

information within the MDCT block is often distorted. Hence, short blocks are used for en-

coding transient information to minimise audible temporal smearing, while long blocks are

used for near steady-state signals to give increased spectral accuracy.

Three other significant improvements are included in the layer III encoder. A non-uniform

quantiser is used to increase the effective dynamic range (in a similar manner to A-law or µ-

law encoding, but operating upon a single frequency band). The quantised samples are

Figure 2.4: Structure of MPEG-1 layer III audio encoder and decoder
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losslessly packed using Huffman coding. Finally, a bit reservoir is included in the layer III

specification. This allows the encoder to increase the bitrate during brief “hard to encode”

sections, so long as it can reduce the bitrate during a nearby “easy to encode” section. The

overall bitrate is held constant, so the scheme is still referred to as “constant bitrate”. In this

manner, the reservoir provides some of the advantages of variable bitrate coding, whilst main-

taining compatibility with fixed bitrate transmission channels.

The layer III decoder is more complex than that required for layers I or II. However, the popu-

larity of MPEG-1 and -2 layer III has led to low-cost single chip layer III decoders becoming

available. Layer III is said to offer near CD quality at 128 kbps.

Many of the intricacies of the MPEG-1 layers are not covered here. Example encoders and

decoders are described in the appropriate standards documents ([ISO/IEC 11172-3, 1993] and

[ISO/IEC 13818-3, 1998]). One important feature is relevant to the present work, and is dis-

cussed in the next section.

2.2.5.4 Joint stereo coding

The redundancy sometimes found within two channel (stereo) signals allows for a significant

bitrate reduction without a corresponding reduction in audio quality. MPEG-1 defines four

modes:

1. Mono

2. Stereo

3. Dual (two separate channels)

4. Joint Stereo

In the first three modes, one or two separate channels are coded individually. In the fourth

mode, the information in the two stereo channels is combined in one of two possible ways to

reduce the bitrate.

Intensity stereo coding takes advantage of the human ear’s insensitivity to interaural phase

differences at higher frequencies.

For each frequency band, the data from the two stereo channels is combined, and the resulting

single channel of audio data is coded. Two coefficients are also stored to define the level at

which this single channel should appear in each of the stereo channels upon decoding. This
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procedure is only appropriate at higher frequencies, but it can offer a 20% bitrate saving com-

pared to normal stereo. Unfortunately, the use of intensity stereo can be audible. Though the

ear cannot detect the interaural phase of high frequency tones, the ear can detect interaural time

delays in the envelope of high frequency signals. These time delays are destroyed by intensity

stereo coding, and the stereo image appears to partially collapse. However, this effect is less

objectionable than highly audible coding noise, so intensity stereo is useful at low bitrates,

where it effectively frees some bits to reduce the coding noise.

Matrix stereo coding exploits the similarity between two stereo channels. Rather than coding

the Left and Right Channels, the Sum (or “Middle”) and Difference (or “Side”) signals are

coded instead, thus:

2

RL
M

+
= (2-1)

2

RL
S

−
= (2-2)

2

SM
L

+
= (2-3)

2

SM
R

−
= (2-4)

The transformation from L/R to M/S is entirely lossless and reversible via equations (2-3) and

(2-4), though quantisation of the M/S signals will prevent perfect reconstruction in practice.

For a signal with very little difference between the two stereo channels (i.e. an “almost” mono

signal) the energy within the S channel is minimal, and the bitrate required for this channel is

comparatively low. Thus, for a mono or 100% out of phase signal, the bitrate reduction is

nearly 50%. For most audio signals, some bitrate reduction may be achieved by the use of joint

stereo. It offers no benefit where the two stereo channels are completely uncorrelated. In some

circumstances, it may cause problems.

For example, consider a stereo signal consisting of audio on the left channel only, with an

almost silent right channel. The right channel may contain a hiss, or a quiet echo. The M and S
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channels will be almost identical. However, the difference between the two channels is enough

to ensure that the coding noise introduced into each channel is not identical. This coding noise

is masked in both channels of the M/S representation. When the left and right channels are

restored in the decoder, the right channel consists of the difference between the M and S sig-

nals. Hence, the right channel will contain very little signal information, but lots of coding

noise. This occurs because the signal that masked the coding noise in the M/S representation is

spatially separated from the coding noise in the decoded L/R output.

MPEG-1 layer III can use a combination of stereo techniques, in which the encoder switches

dynamically between independent stereo, matrix stereo, and/or intensity stereo, depending on

the incoming audio signal and the desired bitrate. This is yet another reason why layer III can

achieve higher quality at a specified bitrate, or a lower bitrate at a given quality than layers I

and II.

It is interesting to note the target bitrates of the three layers. The specifications suggest that

layers I and II achieve CD quality at 256 kbps stereo; layer II at 192 kbps joint stereo, and

layer III at 112-128 kbps joint stereo. Experience suggests that these recommendations are less

than exact. Some audio signals are audibly degraded by some or all of the layers at any bitrate.

Further, the suggested bitrate for layer III is especially optimistic; nearly twice this bitrate is

often required to ensure CD quality over a wide range of material. The majority of layer III

encoders deliver a bandwidth of 15-16 kHz at 128 kbps, which is by definition not CD quality.

Whilst many audio extracts do sound acceptable at 128 kbps, a significant minority do not.

It is necessary to objectively measure the sound quality of audio codecs in order to verify

manufacturers claims, to monitor broadcast sound quality, and to improve encoder perform-

ance. In the next section, some common audio quality measurements are described, and their

application to psychoacoustic audio codecs is discussed.

2.3 Audio quality measurements

If a human listener auditions an audio device, and expresses an opinion that the device sounds

“good” or “bad”, then this opinion represents a subjective judgement. Subjective assessment of

perceived sound quality is very important, since an audio device that sounds subjectively “bad”

is undesirable. However, subjective judgements are notoriously unreliable. The placebo effect

often causes human listeners to perceive “audible” differences, even where there are none.
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Two different listeners may not share the same opinion. In addition, subjective judgements

carried out by the same listener on different days, or even in different moods, may contradict

each other. Careful listening requires controlled conditions, and expert listeners, both of which

are expensive to obtain. In summary, though the subjective audio quality of a device is of

utmost importance, it is exceedingly difficult to quantify. For this reason, objective audio

quality assessment is often preferred.

The audio industry has developed a variety of measurements over its hundred-year history.

These measurements are objective and repeatable. They also give an indication of the per-

ceived or subjective sound quality of the device under test. However, the relationship between

the measured value and the perceived sound quality can be obscure, indirect, or even hidden

due to differing measurement methods. Nevertheless, objective measurements such as the

frequency response, signal to noise ratio, and total harmonic distortion, represent widely un-

derstood methods of quantifying the performance of an audio device.

Three audio quality measurements will be considered, and their application to the assessment

of psychoacoustic based codecs will be discussed.

2.3.1 Frequency response

The frequency response of a device is defined as the gain or attenuation of the device as a

function of frequency. Some measurement methods also produce the phase response as a

function of frequency, though this is less often quoted. A graph of ideal frequency response is

a straight horizontal line, indicating that all frequencies are passed equally by the device. Often

the frequency response is quoted as a range of frequencies. This indicates that the response

does not deviate from the mean by more than the specified amount (typically ±0.5 dB or ±3

dB) over this range. This is a useful and compact method of representing the frequency re-

sponse for many audio components (e.g. amplifiers) which often have a flat response over the

audible band, but attenuate very low and very high frequencies.

Several methods of measuring the frequency response exist, which rely on various signals

being passed through the device. Possible signals include a swept frequency sinusoid, an im-

pulse, or a maximum length sequence. The swept sinusoid will give the amplitude response

directly as a function of the input frequency. The latter two methods require a Fourier trans-
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form to be carried out upon output of the device in order to yield the amplitude and phase

responses.

When measuring the frequency response of a conventional audio device, all methods yield

similar results. One possible exception is the measurement of a loudspeaker’s response within

a real listening room, where standing waves can cause problems at low frequencies with tonal

test signals. However, in general, the frequency response measurement acts as intended.

Ideally, a psychoacoustic audio codec should have a flat frequency response, though a low pass

filter may be included at some high frequency. [Brandenburg, 1999] states that this is a posi-

tive design feature, since encoding high frequency inaudible signals wastes bits which could be

used on lower frequency components. In addition, if the bitrate is constrained, reducing the

bandwidth is preferable to adding large amounts of audible coding noise.

The frequency response measurement should provide this information about the audio codec.

A tone sweep will reveal any fixed low pass filter, but may not reveal any dynamic low pass

filtering that may come into play if the encoder “runs out of bits”. The maximum length se-

quence stimulus consists of white noise, which is difficult to compress efficiently. Hence, this

method of frequency response measurement may cause the encoder to activate any dynamic

low pass filter, and this will be reflected in the frequency response measured by this method.

Alternatively, a true random white noise signal may be fed into the encoder, and the spectrum

may be calculated from the output of the decoder.

To evaluate the frequency response of an audio codec, both methods of frequency response

measurement should be used. If the frequency response is flat up to a cut-off frequency, then

the low pass frequency determined via each measurement is the only data that is required. If

the frequency response is more complex, then a plot of amplitude against frequency obtained

via each measurement may be appropriate.

To characterise an audio codec fully, further measurements are required. The most important

aspect of the codec is the coding noise, which could be viewed as a type of non-linear signal

dependent distortion. Three measurements which are appropriate for noise or distortion are

now examined in turn.
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2.3.2 Signal to Noise Ratio

If the RMS voltage of the maximum signal is VS, and the RMS voltage of the background noise

is VN, then the signal to noise ratio, in dB, is given by:









=

N

S

V

V
SNR 10log20 (2-5)

The RMS noise voltage is measured in the absence of an input signal. A digital audio codec

may easily have an infinite SNR, since a silent (digital zero) input signal will cause a silent

decoded output signal. For this reason, the SNR measurement of a psychoacoustic digital audio

codec is almost worthless. Where the codec does add constant noise, the SNR measurement

will reflect this. However, almost all wide-band audio codecs can reproduce silent signals

perfectly.

2.3.3 Total Harmonic Distortion (plus noise)

Where the device adds signal dependent dis-

tortion, this can be quantified by a THD+N

measurement, as shown in Figure 2.5. A signal

(usually a 1 kHz tone) is passed through the

device. A notch filter centred on the signal

frequency removes the test signal from the

output of the device. The residue consists of

the harmonic distortion plus noise. The THD

may be specified in dB relative to the test

signal, or as a percentage. If a pure THD measurement is required, the noise is measured in

isolation, and subtracted from the THD+N value.

Most audio codecs do not exhibit significant harmonic distortion, though they do add much

enharmonic distortion in the form of coding noise. Whereas the harmonic distortion compo-

nents are found at integer multiples of 1 kHz above the test tone, the distortion added by the

codec is centred on the 1 kHz tone. By definition, the THD includes only harmonic compo-

nents. However, real world THD+N measurements of an audio codec will measure the coding

noise, but the measured value will depend upon the characteristics of the notch filter. Hence,

THD+N is not an accurate measurement of the coding noise.

Figure 2.5: THD measurement technique
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Intermodulation distortion is another phenomenon that is often measured. However, like THD,

it is less relevant to audio codecs because the signal components and the resulting distortion

are at opposite ends of the audible spectrum, whereas the coding noise resides around the

signal frequency.

2.3.4 Input Output difference analysis

In a digital system, providing any delay due to

the device is known and corrected for, the

input signal can be subtracted exactly from the

output signal, as shown in Figure 2.6. The

residue consists of any noise and distortion

added by the device. This technique may be

used to determine the noise that is added by an

audio codec in the presence of an input signal. If a test signal is applied, standard noise meas-

uring techniques (e.g. [ITU-R BS.468-4, 1986] weighting followed by RMS averaging) may be

used to calculate a single noise measurement. Alternatively, a Signal to Noise like Ratio may

be computed, where the noise level is measured in the presence of the signal, rather than with

the signal absent. This noise measurement may be used in equation (2-1), in place of VN. The

measurement is objective and repeatable.

Unfortunately, this measurement is almost useless for audio quality assessment. It is useless

because the measured value does not correlate with the perceived sound quality of the audio

codec. In fact, the noise measurement gives no indication of the perceived noise level.

The problem is that the noise measurement is quantifying inaudible noise. An audio codec is

designed to add noise. The intention is to add noise within spectral and temporal regions of the

signal where it cannot be perceived by a human listener. Subtracting the input signal from the

output of the codec will expose this noise, and the noise measurement will quantify it. If the

inaudible noise could somehow be removed from the measurement, then the resulting quantity

would match human perception more accurately, since it would reflect what is audible. This

task is complex, and many other approaches have been suggested which avoid this task. Some

of these approaches, and the reasons why they are inappropriate, are discussed below.

Figure 2.6: Input Output difference

analysis



BACKGROUND

24

A measurement of coding noise will include both audible and inaudible noise. Many analyses

assume that all codecs will add equal amounts of inaudible noise. If this is true, then the codec

that adds the most noise will sound worst, since it must add the most audible noise. However, a

good codec may add a lot of noise, but all the noise may be masked. This codec will cause no

audible degradation of the signal. Conversely, a poor codec may add only a little noise, but if

the noise is above the masking threshold, then the codec will sound poor to a human listener.

Hence, this approach is flawed, because the basic assumption is incorrect.

Many codec analyses published on the World Wide Web include plots of the long-term spec-

trum of the signal and coding noise. This approach assumes that where the coding noise lies

below the signal spectrum, it will be inaudible, and where the noise is above the signal spec-

trum, it will be audible. Unfortunately, these assumptions are false. Noise above the signal

spectrum may be masked, because masking extends upwards in the frequency domain. Noise

below the signal spectrum may be audible, because the spectrum must be calculated over a

finite time (ranges from 1024 samples to three minutes have been encountered). Hence, the

signal that apparently masks the codec noise may not occur at the same time as the noise itself.

This is especially true for sharp attacks, where many encoders generate audible pre-echo be-

fore the attack. This pre-echo is below the spectral level of the attack, so appears “masked”

using this mistaken analysis method.

The problem with all these techniques is that they side-step the basic problem: it is necessary

to determine which noise components are audible, and which are inaudible, before the audible

effect of the codec upon the signal may be quantified.

In essence, the historical measurements that are discussed above are useful where an audio

device is designed to change the signal as little as possible. However, audio codecs are de-

signed to alter the signal significantly, but in a manner that is inaudible to a human listener. For

this reason, a human listener must be the ultimate judge of the quality of an audio codec.

Subjective human opinion is notoriously unreliable. If it is to act as the ultimate judge, and

provide a reliable quantitative indication of perceived audio quality, then some rigorous proce-

dure must be employed. Such a procedure is described in the next section.



BACKGROUND

25

2.4 Subjective assessment

An international standard exists for “the subjective assessment of small impairments in audio

systems” [ITU-R BS.1116-1, 1997]. The audible noise added by a psychoacoustic codec usu-

ally falls within the definition of a “small impairment”. This includes all codecs that aim to be

“transparent”, where the difference between the original and coded audio signals may or may

not be audible. If the perceived degradation due to the codec is large enough to be obvious to

untrained listeners, then another assessment standard is appropriate. The MUSHRA standard,

(proposed by the EBU [EBU, 2000], and now undergoing ratification by the ITU as [ITU-R

draft BS.6/106, 2001]), addresses the assessment of medium quality audio codecs, where the

audible impairment is obvious.

There are two reasons for the existence of two separate standards. Firstly, BS.1116 is very time

consuming, mainly because it is necessary to prove that an audible impairment actually exists,

before any quantification of the impairment can be considered valid. Within the MUSHRA

testing procedure, it is assumed that the impairment is audible, which reduces the testing time

considerably. Secondly, at some bitrates, it is impossible to achieve near CD quality, and

codecs operating at these bitrates cannot be expected to sound transparent. Nevertheless, where

the bitrate is severely limited it is useful to know which audio codec offers the best audio

quality. Testing low bitrate codecs using BS.1116 will yield a set of results that are clustered

within the worst quarter of the impairment scale, and the differences between codecs will be

inaccurately represented. MUSHRA allows listeners to compare codecs directly, thus giving a

more accurate prediction of relative quality of each codec.

There is a region of overlap between the two testing methodologies. However, all medium-to-

high quality audio codecs are suitable for assessment via BS.1116, and this testing procedure is

examined in detail.

In order to make all tests as “equal” as possible, BS.1116 contains strict guidelines on the

following issues: choice of listeners, testing method, impairment scale, statistical analysis of

results, listener training, choice of test material, specifications of loudspeakers and head-

phones, characteristics of listening environment including size, loudspeaker positioning,

background noise, reverberation time etc, and listening level.
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The choice of listeners is very important. All the listeners involved in the test should have

experience in assessing audio quality, and must have demonstrated the ability to discern the

types of audio impairment that will be auditioned in the test. All listeners must be trained

extensively before the test is carried out. The results from a listener may be rejected after the

test, if their results demonstrate that they were unable to reliably detect impairments. Ap-

proximately 20 listeners are desired, though fewer numbers are often used in practise.

The choice of test signal is critical. It is known that the noise added by audio codecs is signifi-

cantly more audible within certain audio signals. It is suggested that appropriate material

should be selected via an initial listening test. Only the most challenging audio extracts are

suitable for use within a listening test. Extracts should be no longer than 1 minute. A duration

between 15 and 30 seconds is ideal.

The test method is “double-blind triple-

stimulus with hidden reference”, as follows. A

listener is presented with three audio extracts,

identified as A, B, and C. The playback of

these extracts is under the listener’s control.

They may listen to each extract as many times

as they wish, and switch between extracts at

will. Extract A is the original version, and

extracts B and C are the original and coded

versions, presented in a random order. The

listener must identify whether B or C is the

coded signal, and grade that extract on a scale

from 1-4.9, shown in Figure 2.7. The listener

must select either B or C as the coded version.

This is to prevent conservative listeners from

grading all extracts at 5.0, and is found to

improve the accuracy of the test.

Where B or C is audibly different from A, but

the coded version is preferred, this difference

should still be assessed, and graded between

4.9 and 4.0 (perceptible but not annoying).

Figure 2.7: Scale used within BS.1116

(from [ITU-R BS.1284, 1997])
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If the listener believes that B is the coded version, then by inference, C must be the original.

Hence, C is implicitly given a score of 5.0. Some tests insist that the listener should grade both

B and C explicitly, but since the listener is aware that one of B or C is the original signal, this

is not strictly necessary. The raw score is not used as an indication of codec quality, but is

transformed into a diffgrade, thus:

originalcoded scorescorediffgrade −= (2-6)

where scorecoded is the score that the listener gave to the coded extract – not the score that the

listener gave to the extract that they believed was the coded one. Thus, where the listener is

mistaken in their choice, a positive diffgrade is generated, and where the listener correctly

identifies the coded audio, a negative diffgrade is generated. The mean of all the diffgrades

assigned to a given extract by all the listeners is a good indication of the perceived sound

quality5. The transference of the scale in Figure 2.7 to the diffgrade scale (by subtracting 5

from each of the numbers) adds some descriptive information to the numerical diffgrade.

An excellent example of a BS.1116 test is reported in [Meares et al, 1998], and the first large-

scale MUSHRA test is reported in [Stoll and Kozamernik, 2000].

2.4.1 Beyond subjective assessment

The BS1116 procedure is very time consuming, due to listener selection and training, and

extract selection. The results are accurate, and surprisingly consistent, though some “anchor”

extracts are sometimes required to ensure that the score-space is used correctly and consis-

tently. However, the time and money involved prevents true BS.1116 compliant tests from

being used in all situations where codec audio quality must be assessed.

In particular, it is very difficult to assess the audio quality of a codec “in service” within a

broadcast chain using a subjective test. It is also painfully slow and expensive to use full scale

BS.1116 subjective tests during the development cycle of an audio codec. For these reasons, it

                                                  

5 BS1116 strongly advises statistical processing to pre-filter rogue results, and ANOVA to determine the

relationship between listener, codec, and audio extract. However, after the results have been filtered, the

mean of the diffgrades across listeners does indicate the perceived quality of that codec/extract combination.
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is desirable to develop an objective measurement that can mimic the performance of a human

listener within a BS.1116 subjective test.

The objective measurement equipment must “listen” in a comparable manner to a human

listener, comparing original and coded audio signals, and quantifying the audible difference

between them. An ideal objective measurement would match the diffgrade, though more de-

tailed information about the character of the audible differences would be useful in codec

development.

An objective measurement tool which achieves these goals has been developed [Thiede et al,

2000]. At the heart of this tool is a psychoacoustic model that simulates human hearing. This

tool, and many other psychoacoustic models, are discussed in Chapter 4.

Psychoacoustic models are based upon human hearing. Hence, before examining existing

psychoacoustic models, the human auditory system will be discussed in detail in Chapter 3.

2.5 Conclusion

Psychoacoustic codecs reduce the amount of data required to represent an audio signal, by

degrading masked regions of the spectrum. Conventional objective measurements of audio

quality cannot predict the perceived quality of these codecs. Human listeners must be the final

arbiters of quality judgements, and rigorous subjective test procedures have been prescribed

which allow consistent qualitative assessments of audio quality to be carried out by expert

listeners. However, it has been shown that this procedure is time consuming and expensive,

and an objective alternative is required for many applications.



29

3 

The Human Auditory System

3.1 Overview

In order to develop a model capable of simulating human hearing, it is desirable to understand

the mechanisms present within the human auditory system (HAS). In this chapter the path of

an audio signal is followed from free space, through the HAS, to its representation by neural

impulses within the brain. At each stage along this path, it will be noted whether present

knowledge is quantitative, qualitative, or theoretical. The sources of quantitative data and

processing theories will be presented. Particular attention is given to the processes that give

rise to the limits of human hearing, such as masking effects.

3.2 A walk through the human auditory system

Figure 3.1 (split across two pages) shows the main components of the human auditory system.

The upper illustrations represent the physiology – the actual physical components that are pre-

sent and identifiable within the human anatomy. The lower graphs indicate the functionality of

each section. All frequency domain plots show amplitude in dB against log frequency. All time

domain plots are linear on both scales. The illustration of the organ of corti at the top of Figure

3.1 (c) is taken from [Yates, 1995]; Figure 3.1 (d) is after [Patterson, WEB-1].



------------------------------------ (a) ------------------------------------ ------------------------------------ (b) ------------------------------------

Figure 3.1: Signal path through the Human Auditory System

Upper Half: physiology     Lower Half: function
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------------------------------------ (c) ------------------------------------ ------------------------------------ (d) ------------------------------------

Figure 3.1: Signal path through the Human Auditory System

Upper Half: physiology     Lower Half: function
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Referring to Figure 3.1, the function of each section is as follows.

• The pinna is the flap of skin and cartilage found on each side of the human head. Some

researches use the term concha. Together with the ear canal, it forms the outer ear.

The function of the pinna is to direct sound into the ear canal. In doing so, the shape of

the pinna causes the incoming signal to be filtered in a direction dependent manner.

• The ear canal forms a tube, linking the pinna to the timpanic membrane. The dimen-

sions of the ear canal are such that it forms a resonance at around 2-5kHz, causing fre-

quencies outside this range to be severely attenuated.

• The timpanic membrane (also known as the eardrum) lies at the base of the ear canal.

The small ossicles bones known as the malleus, incus, and stapes act as an impedance-

matching device, transmitting air-born sound pressure waves into fluid-born sound

pressure waves within the cochlea.

• The fluid-filled cochlea is a coil within the ear, partially protected by bone. It contains

the basilar membrane, and hair cells, responsible for the transduction of the sound

pressure wave into neural signals.

• The basilar membrane (BM) semi-partitions the cochlea, and acts as a spectrum ana-

lyser, spatially decomposing the signal into frequency components. Each point on the

BM resonates at a different frequency, and the spacing of resonant frequencies along

the BM is nearly logarithmic. The effective frequency selectivity is governed by the

width of the filter characteristic at each point.

• The outer hair cells are distributed along the length of the BM. They react to feedback

from the brainstem, altering their length to change the resonant properties of the BM.

This causes the frequency response of the BM to be amplitude dependent.

• The inner hair cells fire when the BM moves upwards, so transducing the sound wave

at each point into a signal on the auditory nerve. In this way the signal is effectively

half wave rectified. Each cell needs a certain time to recover between firings, so the av-

erage response during a steady tone is lower than that at its onset. Thus, the inner hair

cells act as an automatic gain control. The firing of any individual cell is pseudo-

random, modulated by the movement of the BM. However, in combination, signals

from large groups of cells can give an accurate indication as to the motion of the BM.
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These processes will be considered in detail, before moving on to a discussion of the subse-

quent neural processing.

3.2.1 The Pinna

Until the late 19th century, the pinna was thought to be a simple funnel that directed sound into

the ear. It is now known that the pinna is responsible for the ability to locate sounds in 3-D

space. This ability is worthy of study in the present context, since all commercial systems

which aim to create a virtual auditory environment rely on this property of human hearing to

some extent. These include Dolby virtual surround, Lake theatre-phones, and any binaural

[Robinson and Greenwood, 1998] or transaural [Foo et al, 1998] processing.

Humans can locate sounds in three dimensions. This is evident from the fact that sounds com-

ing from outside our field of vision can be readily located. There are six mechanisms, or cues,

by which humans locate sounds [Robinson and Greenwood, 1998], [Grantham, 1995]. These

mechanisms will be examined by considering the sound that would reach a listener’s ears from

a source in front of them, slightly to their right.

1. If the source is nearer the right ear than the

left, the sound will reach the closer ear first,

yielding a time delay between the signals

received at each ear. This is called the inter-

aural time (or phase) difference, or ITD.

Figure 3.2 [Green, 1976] shows a graph of

inter-aural time difference against source

angle in the horizontal plane. Note that the

graph is symmetrical, so for each angular

position in front of the listener, there is a

corresponding position behind the listener

that yields the same ITD.

At around 1.5 kHz the wavelength of a pure tone is equivalent to the distance between the

two ears. Hence, above half this frequency, the phase relationship between the signals ar-

riving at each ear will be ambiguous, and it will be impossible for the auditory system to

calculate a unique ITD. It is sometimes erroneously stated that the ITD provides no useful

Figure 3.2: Variation of Interaural time

difference with source angle
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localisation information for signals above 700Hz. However, this restriction only applies to

pure tones. For complex signals containing only frequencies above 700Hz, the signal enve-

lope may vary at a rate well below 700Hz, and hence the inter-aural time delay may be de-

duced with ease [Boerger, 1965].

2. The level of sound reduces as the square of

the distance from the source (1/r2 law). If

the source is slightly nearer the right ear,

the sound reaching that ear will be louder

than that reaching the left. However, given

the distance between the two ears, this is a

small effect. More significantly, at higher

frequencies, the head acts as a barrier to

sound waves, so signals originating from

one side of the listener will be attenuated at

the opposite ear. This gives rise to the inter-

aural level (or intensity) difference, or ILD.

Figure 3.3 [Green, 1976] shows how the interaural level difference varies with source angle.

Note that the effect is more pronounced for higher frequencies, where the head shadow ef-

fect is greatest.

3. The action of the pinna is third in order of importance. This will be discussed it in detail

after the other cues.

4. If a listener is able to move their head, all the cues change dynamically, depending on the

exact location of the source. This gives humans a more accurate bearing on the source loca-

tion, and itself acts as a fourth localisation cue. It is often used subconsciously to resolve

ambiguity in source location when all other cues are inconclusive.

The fifth and sixth cues are significantly weaker than the others.

5. In a reverberant environment (e.g. any normal room), the loudness of the direct sound from

the source compared to the level of reverberation will give an indication of the source dis-

tance. Early reflections may also strengthen the ability of the HAS to perceive the distance

of the source.

Figure 3.3: Variation of Interaural level

difference with source angle
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6. Finally, if the source is a great distance away, the large volume of air through which the

sound must pass will attenuate high frequencies, yielding another distance cue.

If the listener keeps their head stationary, thus excluding cue four, the remaining cues give no

way of knowing whether the source is in front or behind, or above or below the listener.

Psychoacousticians talk of the “cone of confusion” which is the cone-shaped plane of possible

locations inferred by the ITD cue alone [Mills, 1972]. Without further information, the audi-

tory system has no way of accurately locating the sound source in real space. However, it is

evident from everyday life, and has been proven experimentally, that humans are able to locate

sounds without head movement, all-be-it with reduced accuracy.

This is possible because of the pinna. The pinna filters the incoming sound wave in a direc-

tionally dependent manner. Figure 3.4 shows the frequency response of the sound reaching the

ear canal (via the pinna), from sources at various angles around a listener. The measurements

in Figure 3.4 were made using a dummy head (a similar set of measurements are available

from [Gardner and Martin, 1994]), but real human data are similar. These responses are called

Head Related Transfer Functions (HRTFs) (see [Moller et al, 1995] for an extensive study).

However, humans do not perceive this pinna filtering as changing the spectrum of the sound –

the auditory system decodes the spectrum shape into spatial information.

For example, consider a sound source to the right of a listener, at a bearing of 45o. There is a

dip around 10 kHz in the HRTF for this angle, as shown in Figure 3.4. The auditory system

detects this spectral signature, and decodes it into an estimate of source location. This process

happens unconsciously, so the listener perceives a source at 45o, and is unaware of the spectral

coloration added by the pinna.

The surprising result is that humans do not need two ears to localise sounds. Blocking one ear

proves that even without the ITD and ILD information, the spectral cues due to the pinna are

sufficient to allow a human listener to localise sounds in 3-D space [Battaeu, 1967].
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Figure 3.4: Head Related Transfer Functions of a dummy head
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An interesting feature of human auditory localisation is that visual cues can be stronger than

audio cues. Where the two contradict, the visual cue usually takes precedence. Though ex-

periments in darkened rooms have proven that listeners can accurately locate sound sources to

within ± 1°, a voice will often appear to originate from the lips of a person displayed on a T.V.

or cinema screen, even though the sound originates from a loudspeaker several centimetres or

even metres away. Multi-modal phenomena such as this are beyond the scope of the current

research.

3.2.2 The ear canal

The resonant cavity between the outer and

middle ear is called the ear canal (see Figure

3.1). It resonates in a similar manner to an or-

gan pipe, since it is open at one end, and

closed at the other, as shown in Figure 3.5 (af-

ter [Young, 2000]). The ear canal has a di-

ameter of less than 1 cm, and is approximately

2.3 cm in length. Using this information, the

resonant frequencies corresponding to the fun-

damental and 1st overtone can be calculated as

follows.

An approximation to the speed of sound in air,

v, is given by

Tv 6.0331+= (3-1)

where T is the temperature in degrees centigrade. The core temperature of the human body is

typically 37 degrees centigrade, and the air within the ear canal is approximately 30 degrees

centigrade. Hence, from equation (3-1) the speed of sound within the ear canal is approxi-

mately 350 ms-1. If the length of the ear canal is given by l, then it can be seen from Figure 3.5

that the wavelengths of the fundamental and first overtone, λf and λo, are related to l thus:

4

f
l

λ
= (3-2)

(a) Fundamental

(b) 1st Overtone

Figure 3.5: Resonance of a closed pipe

The antinodes and nodes are displacement maxima

and minima respectively.
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4

3 o
l

λ
= (3-3)

However, for any waveform

λfv = (3-4)

So the frequencies of the fundamental and 1st overtone are given by

l

v
ff

4
= (3-5)

l

v
fo

4

3
= (3-6)

From this calculation, the frequency of the

fundamental resonance is approximately

3.8 kHz, and the frequency of the first over-

tone is approximately 11.4 kHz. The measured

frequency response of the ear canal matches

this calculation, exhibiting peaks around 4 kHz

and 12 kHz. See [Mehrgardt and Mellert,

1977] and [Moller et al, 1995a] for ear canal

response measurements.

In summary, signal components at or near

these resonant frequencies are boosted within

the ear canal. This response contributes to the

ears increased sensitivity to speech (mid-

frequency) sounds. Figure 3.6 (from [Plack

and Carlyon, 1995]) shows the level of sound

at each frequency which humans perceive as

being the same loudness. Examination of these

Figure 3.6: Equal loudness contours and

Minimum audible field

The contours join sounds of equal perceived loud-

ness. The reference for each contour is the perceived

loudness of a 1 kHz tone at the SPL indicated on the

graph. At all other frequencies, the contour indicates

the SPL required for a sound of that frequency to

match the perceived loudness of the reference tone.
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curves shows the importance of the fundamental ear canal resonance, clearly visible as an in-

creased sensitivity to sounds in the 2-6 kHz frequency region. The lower half of the resonance

due to the 1st overtone is also visible at the extreme right of the graph.

3.2.3 Middle Ear

The timpanic membrane (eardrum), malleus (hammer), incus (anvil) and stapes (stirrup)

transmit the sound pressure wave from the ear canal into the cochlea. These three ossicles

bones act as a leverage system, converting the weak, high-amplitude oscillatory movement of

the eardrum into a stronger, lower-amplitude force at the cochlea. This is transmitted into the

cochlea by the pistonic action of the stapes against the oval window.

The frequency response and active non-linear properties of the middle ear are still open to de-

bate. Historically, some researchers have assumed that the inner ear is equally sensitive to all

frequencies. If this is true, then the changes in sensitivity with frequency within the HAS

shown in Figure 3.6 are entirely due to the frequency response of the outer and middle ear.

Other researchers (e.g. Zwicker and Fastl, 1990]) have suggested that internal noise at lower

frequencies is entirely responsible for the ears decreased sensitivity to low frequency sounds.

Recently, direct measurements of the middle ear transfer function in human cadavers [Puria et

al, 1997] suggest that the middle ear transfer function gives rise to most of the variation shown

in Figure 3.6. However, the outer ear, and (to a lesser extent) internal noise, both play a role.

Thus, the averaged inverse of the Equal Loudness curves provides a good estimate of the outer

and middle ear transfer function, especially at higher levels, where the effects of internal noise

are less significant.

The recent measurements carried out upon dead subjects give no insight into active mecha-

nisms which may or may not be present within living ears. Many of the non-linearities which

have previously been attributed to the middle ear are now believed to be generated by proc-

esses within the cochlea. However, the leverage system within the middle ear is believed to

stiffen and/or retract from the oval window in the presence of exceptionally loud sounds, so

offering some protection to the delicate mechanisms found within the cochlea.
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3.2.4 The Cochlea1

The fluid-filled cochlea is a coil within the ear, partially protected by bone. The sea water-like

fluid vibrates with the incoming sound wave. The cochlea is semi-partitioned along its length

by a thin flap called the basilar membrane.

3.2.4.1 The basilar membrane

The basilar membrane (BM) vibrates with the incoming sound, and acts as a spectrum ana-

lyser, spatially decomposing the signal into frequency components.

The movement of the BM is in the form of a

travelling wave, as demonstrated by [von

Békésy, 1960]. The wavefront travels from the

oval window, down the BM towards the apex.

The amplitude envelope of this travelling wave

varies along the BM, as shown in Figure 3.7.

The location of the maximum amplitude of

oscillation marks a point of resonance, and the

location of this resonance is dependent on the

frequency of the incoming signal, as follows.

The stiffness of the BM decreases along its

length. The resonant frequency of a point on

the BM varies with stiffness, thus sounds of

different frequencies cause different parts of

the BM to vibrate.

At the base (near the stapes and oval window)

the BM is narrow and stiff. The BM becomes

broader and more flexible further into the

cochlea (i.e. further along the BM). The differ-

                                                  

1 A recent review of the structure and function of the cochlea can be found in [Yates, 1995].

Figure 3.7: Properties of the basilar mem-

brane
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ence from base to apex is a factor of about 3-4 times broader and 100 times more flexible.

Higher frequencies cause oscillations near the base, where the BM is at its stiffest, and visa

versa. This yields two interesting consequences.

3.2.4.1.1 Non-uniform frequency selectivity

The spacing of frequency resonances along the

BM is not linear with frequency. For instance,

if we take the point on the BM that resonates at

2 kHz, and measure the distance to the point

that resonates at 4 kHz, we may find that it is

1 cm. If we now move a further 1 cm along the

BM, we might expect to reach the 6 kHz reso-

nant point. In fact we find a resonance of

around 8 kHz. The resonant frequencies of

various points along the BM are shown in

Figure 3.8, from [Carterette, 1978]. These are

known from probe experiments on mammalian

cochlea, though some interpolation is neces-

sary. The scale that relates the resonant fre-

quency to position on the BM is called the

Bark scale, or critical band scale, as shown in

Figure 3.9. A formula for converting linear

frequency to Bark scale is given in [Traun-

müller, 1990]. Above 500 Hz, it is a reasonable

approximation to a log scale [Zwicker and

Terhardt, 1980].

At higher frequencies, this matches human

pitch perception, which is logarithmic. Musical

instruments are also tuned logarithmically. The

reader is invited to listen to the demonstration of linearly spaced and logarithmically spaced

tones included on the accompanying CD-ROM. Linear frequency steps sound very large at low

frequencies, and very small at higher frequencies. Logarithmic frequency steps sound ap-

proximately equal across the audible frequency range.

Figure 3.8: Position of resonant frequen-

cies along the coiled length of the basilar

membrane

 Figure 3.9: Relationship between fre-

quency and critical band (bark) scale
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Whilst there is a good correlation between frequency spacing on the BM and perception of

pitch, this does not prove that pitch perception is entirely due to resonance location on the BM.

This simplified view is correct for higher frequencies, but for lower frequencies, the firing

rates of the hair cells upon the BM are more important. This will be discussed in Section

3.2.4.2.

3.2.4.1.2 Spectral masking

In the previous section it was shown that the mechanical structure of the BM causes it to act as

a spectrum analyser, spatially decomposing the signal into frequency components. The audi-

tory system can listen to the oscillation at any single point on the BM to the exclusion of all

others. This gives the human auditory system the ability to filter out or ignore sounds away

from the frequency of interest. The frequency resolution of such an analyser is limited by the

width of the filter characteristic at each detection point. If the filters were infinitely narrow,

then the presence of one spectral component would never impair the ability to detect another2.

In reality, this is not the case, and the filters have a finite width.

The width of the filters varies with frequency. The relationship between resonant frequency

and filter width is similar to the relationship between resonant frequency and filter spacing.

The widest filters (giving the best time resolution, but poorest frequency selectivity) occur at

high frequencies, whilst narrower filters (giving better frequency resolution) occur at lower

frequencies.

                                                  

2 An infinitely narrow filter would also ring indefinitely, and introduce infinite delay.
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Figure 3.10 shows the response at a particular

point on the BM [Irino and Patterson, 1997].

The point on the BM graphed in black reso-

nates at around 1 kHz, and it responds some-

what to all frequencies below the resonance,

but rejects higher frequencies. Each point on

the BM has a similar response, shifted up or

down in frequency (shown in grey). If the

BM is stimulated with a pure tone, the re-

sponse is the excitation pattern show in

Figure 3.11. The excitation pattern is the re-

versal of the frequency response. Mathemati-

cally, the frequency response (Figure 3.10) is

convolved with a delta function (the pure

tone), hence the reversal.

To show this empirically, examine the re-

sponses of the resonances either side of the

pure tone (i.e. the grey curves in Figure 3.10,

either side of the vertical black line). The

height at which they intersect the vertical

black line corresponds to the amplitude of

oscillation at that point on the BM. Note that

all points above the tone are excited by it

somewhat, but points significantly below it

are not, which corresponds to the shape of the

excitation curve. (This intuitive way of ex-

plaining the convolution was taken from

[Hollier, 1996].)

Thus, a single pure tone excites a wide region

of the BM. This is unsurprising; the BM is a

continuous membrane, so it would be impossible for one point on it to move, whilst an adja-

cent point remained stationary, as that would cause it to rip or tear. Thus, even a pure tone

(which is spectrally very narrow) must excite a finite region. This region extends upwards in

Figure 3.10: Frequency response of points

on basilar membrane

The black curve shows, for a range of input fre-

quencies (x axis), the amplitude of vibration of one

particular point on the BM (y axis). The vertical

black line indicates a 1 kHz pure tone. This excita-

tion due to this tone is shown in the next figure.

Figure 3.11: Excitation of basilar mem-

brane due to a 1 kHz pure tone

 This graph shows, for each point on the BM (x

axis), the amplitude of vibration of each point (y

axis) due to a pure tone.
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frequency because the sound wave enters the cochlea at the high frequency end of the BM, and

travels down to the appropriate resonant place. Beyond this resonant place, the oscillation is

rapidly damped.

The oscillating region covers the resonant peaks of several frequencies either side of the pure

tone. Consider what would happen if a second pure tone is applied. This tone is of lower am-

plitude and slightly higher frequency than the first tone, and the region that it should excite on

the BM is already excited by the original tone. If this new tone were played in isolation, the

BM would vibrate, and it the tone be heard by the listener. However, the BM is already vi-

brating, and the presence of the new tone may not cause an increase in vibration. This means

that the new tone will be inaudible. This effect is called spectral (or frequency) masking. No

matter how hard or carefully the listener strains to hear the second tone, the transducing appa-

ratus in the human ear does not have the capability to pass information about the second tone

on to the brain. It can never be heard in the presence of the first (louder) tone [Moore et al,

1998].

This tone masking tone phenomenon can be demonstrated by generating a series of tones as-

cending in pitch, and then adding a louder tone, at an intermediate pitch, which persists

through the entire sequence. A spectrogram of such a sequence is shown in Figure 3.12, and

this demonstration is included on the accompanying CD-ROM. As the pitch of the stepped

tones passes through the louder tone, the stepped tones become inaudible, demonstrating the

Figure 3.12: Left: Spectrogram of a demonstration of spectral masking

Right: Indication of masking due to 800 Hz tone
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spectral masking due to the louder tone. Another feature is that the masking extends further

above the tone than below it, due to the upwardly extended excitation pattern on the BM, as

shown in Figure 3.11 – this is usually referred to as the upwards spread of masking.

In addition to the masking of one tone by another, there are three other basic masking phenom-

ena: tone masking noise, noise masking tone, and noise masking noise. In each of these, the

first signal is the masker, and the second is the maskee or target. The masked threshold is de-

fined as the level at which the target signal is just audible in the presence of the masker. The

amount of masking is defined as the difference between the masked threshold and the threshold

in silence. The amount of masking depends on the nature of both the masker and the target,

since the two can interact in complex ways within the ear. However, in all cases it is the action

of the basilar membrane which is responsible for the masking.

Tone masking tone is the most complex combination, since the two tones can interact, gener-

ating beats and combination tones which undo the masking to a certain extent. A thorough

study of this phenomena, and much useful psychoacoustic data, can be found in [Moore and

Alcántara, 1998] and [Alcántara et al, 2000].

Tone masking noise: noise stimuli can be either narrow- or wideband. For a pure tone to mask

noise, the noise must fall below the excitation due to the tone, and hence must be narrowband.

The threshold is a function of the level, bandwidth, and centre frequency of the noise. Again,

much useful data can be found in [Moore and Alcántara, 1998].

Noise masking tone: historically, experiments involving narrow band noise masking a pure

tone have been used to discover the shape of the auditory filter, and much of the available data

is in this form. The noise is centred on the frequency of the tone, and the bandwidth of the

noise is increased. The tone becomes harder to detect, up until the point where the noise band-

width matches that of the auditory filter. This is referred to as the critical bandwidth. Increas-

ing the bandwidth of the noise beyond this causes no further reduction in the threshold of the

tone. This is because the excess noise falls outside the filter characteristic of the point on the

BM which detects the tone. This experiment was first performed by Fletcher in 1940, and has

been repeated many times since (see [Bernstein and Raab, 1990] for a recent version).
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Wideband noise masking a pure tone is the

simplest of these synthetic stimuli for which to

define the amount of masking, which is a

function of target frequency, and (to a lesser

extent) the level of the masker. A large amount

of useful data is found in [Reed and Bilger,

1972].

Beyond these simple cases, almost all audio

signals cause spectral masking. Spectral

masking is a very important concept in the de-

sign of audio codecs. There are masked spec-

tral regions around the loudest spectral com-

ponents of every audio signal. These regions

may be ignored, or filled with quantisation

noise, without audibly altering the signal. For

this reason, any model aiming to assess the

quality of coded audio must take account of

spectral masking. However, calculating the

masked threshold for an arbitrary signal is a

challenging task due to the non-linear nature of

the ear.

3.2.4.1.3 Non linearities

The response of the basilar membrane to an

incoming audio signal is amplitude dependent.

The excitation pattern shown in Figure 3.11 is

for a 90dB SPL stimulus. Figure 3.13 shows how this excitation varies with stimulus ampli-

tude, while Figure 3.14 [Zwicker and Zwicker, 1991] shows how this effects the measurable

masked threshold. Though the two graphs are drawn to different scales, the correlation be-

tween BM excitation and masked threshold (which has been heavily inferred throughout this

discussion) is evident by comparing the two graphs.

Figure 3.13: Variation of excitation on BM

with stimulus amplitude

Figure 3.14: Variation of masked threshold

with stimulus amplitude
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Figure 3.14 shows that the shape of the masking curve is a function of stimulus amplitude,

with a loud stimulus giving greater upwards spread of masking. Figure 3.13 confirms that this

effect can be traced to the excitation upon the BM, which varies in a similar manner. Also,

close examination of Figure 3.13 reveals that the position of the resonant peak changes slightly

with stimulus amplitude. This latter phenomena does not have a direct effect upon masked

thresholds, but it does affect pitch perception. For higher frequencies, for which the dominant

pitch cue is the place of maximum vibration on the BM (see Section 3.2.4.1.1), the perceived

pitch of a given frequency increases with stimulus amplitude, as first shown in [Stevens, 1935].

The non-linearity of the BM response has an important effect. The masking due to various

simple stimuli was discussed in the previous section. Any arbitrary signal can be approximated

as a series of tonal and noise-like components. The masking due to this arbitrary signal may be

predicted from the linear supposition of the masking due to each component. However, excita-

tions on the BM, and hence the masking due to them, do not add in a linear manner. This is

very significant: many auditory models are introduced by noting that masking does not add in a

linear manner, but this fact is subsequently ignored for the sake of computational efficiency.

The cause of the non-linear response of the BM is discussed in Section 3.2.4.3.

3.2.4.2 The Inner Hair cells

We now return to our journey through the human auditory system. The basilar membrane is

moving in response to the incoming sound wave. This movement is detected by thousands of

tiny hair cells, running along the length of the BM. There are many different types of cells on

the BM, but the two most important are the inner and outer hair cells, labelled in Figure 3.1(c).

There are approximately 4000 inner hair cells along the length of the BM. They transduce the

movement of the BM into neural impulses, which are carried onto the brain via the auditory

nerve. At medium and high amplitudes, the inner hair cells only fire when the BM moves up-

wards, so the signal is effectively half wave rectified. This does not occur at lower amplitudes,

so the process is sometimes referred to as “soft rectification”. Each cell needs a certain time to

recover between firings, and the firing of any individual cell is pseudo-random, modulated by

the movement of the BM. However, in combination, signals from groups of cells can give an

accurate indication as to the motion of the BM.
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At lower frequencies the firing of individual inner hair cells may phase lock to the incoming

signal, thus the phase of the signal is preserved and transmitted along the auditory nerve. How-

ever, above approximately 1.5 kHz, the hair cells cannot lock onto individual cycles, and only

the amplitude envelope is transmitted. The hair cells may phase lock onto sub-multiples of

higher frequency stimuli (i.e. every 2nd or 3rd cycle), but the resulting phase information is

weaker.

In the lower phase-locked frequency region, the repetition rate of the inner hair cells gives the

auditory system a strong cue as to the frequency of the stimulus. This accounts for the ability

to accurately discriminate pitch at lower frequencies, which would not be possible if the ear

relied solely on the resonant place upon the BM.

The firing of the inner hair cells also transmits information about the amplitude of BM motion.

The greater the amplitude of motion, the greater the probability of a given hair cell firing.

However, for a single cell, this process rapidly saturates. To overcome this, three sets of cells

of differing sensitivity are arranged across the BM. This extends the dynamic range to around

103. The short-fall between this, and the measured dynamic range of 106 is discussed in Section

3.2.4.3, after discussing the other features of the inner hair cells.

3.2.4.2.1 Temporal masking

The response of a group of inner hair cells

to short and long tone bursts is shown in

Figure 3.15 (calculated from [Meddis,

1986], [Meddis, 1988], [Meddis et al,

1990]). Three important features are ap-

parent. Firstly, the hair cells are most sen-

sitive to the onset of sounds. Secondly, the

hair cells take a finite time to recover their

full sensitivity after the end of a sound.

Thirdly, the magnitude of this recovery

depends on the duration of the sound. This

gives rise to a process known as temporal

Figure 3.15: Overall response of hair cells to

two 1 kHz tone bursts (5 ms then 200 ms)
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masking3. If a sound (of a similar frequency) occurs during the period of recovery, the hair

cells may be unable to register it, hence it may be inaudible.

This has been demonstrated experimen-

tally [Zwicker, 1984]. A burst of white

noise is followed by a short tone. The

graph in Figure 3.16 shows the masked

threshold of the tone at various times after

the burst of noise. Note that the time scale

on the graph is logarithmic. The two plots

are for 200ms and 5ms bursts of noise.

Tones below the level indicated are inau-

dible.

This phenomenon is called post-masking, since the masking effect occurs after the masker.

Pre-masking is also a measurable phenomenon, whereby a sound preceding a masker may be

masked. Pre-masking is a small effect; untrained subjects sometimes exhibit pre-masking

thresholds comparable to those found for post-masking. However, trained subjects typically

exhibit pre-masking durations which can be accounted for by the ringing of the auditory filters

(i.e. the motion of the BM, discussed in Section 3.2.4.1), hence the hair cells are thought to

play no part in pre-masking. Despite this, the exact cause of pre-masking is still under debate.

Temporal masking is an important concept in the design of audio codecs. The masked regions

following loud sounds are rarely used for the concealment of quantisation noise. However, the

filterbanks found in audio codecs spread the audio energy in the time domain, and if this

spreading exceeds the limits of temporal masking, it will cause audible damage to the signal.

For this reason, any model aiming to assess the quality of coded audio must take account of

temporal masking.

                                                  

3 At the time of experimentation, latest psychoacoustic knowledge suggested that temporal masking was due

to the adpatation present within the auditory system, substantially the action of the inner and outer hair cells.

Recent work [Oxenham, 2001] suggests that this may not be the case, and that a temporal integration process

within the brain may be responsible. Without wishing to spoil the plot of the thesis, it is interesting to note

that a temporal integration stage was necessary in the final model in place of higher processing.

Figure 3.16: Temporal masking

Threshold due to a 200ms (solid line) and 5ms (dashed

line) burst of white noise. Threshold shown for 5ms

burst of 2kHz tone. [Zwicker, 1984]
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3.2.4.2.2 Absolute Threshold

The inner hair cells fire at random, even in

the absence of any incoming sound. In si-

lence, the blood flowing around the re-

gions of the inner ear becomes audible.

These two factors combine to set an abso-

lute minimum threshold of hearing. The

shape of the threshold of audibility (Figure

3.17) is set by the resonance of the ear ca-

nal, the fall off in mechanical sensitivity of

the BM at the frequency extremes, and the

death of hair cells as humans age. The ab-

solute minimum value, due to random hair

cell activity, is 106 times less than that of

the loudest sound humans can hear.

3.2.4.3 The outer hair cells

There are approximately 12000 outer hair cells distributed along the length of the BM. They

react to feedback from the brainstem, altering their length to change the resonant properties of

the BM. This causes the frequency response of the BM to be amplitude dependent, and extends

the dynamic range of the human auditory system.

Together, the inner and outer hair cells interact in an active feedback system, referred to as the

cochlea amplifier, which increases the movement of the BM for quiet sounds, and suppresses it

for loud ones. This mechanism is widely hypothesised, but unproven4. It is difficult to measure

                                                  

4 The stereocilia are directly above the outer hair cells, and are triggered by shearing forces between the outer

hair cells and the tectorial membrane. One hypothesis [Yates, 1995] suggests that information from the stere-

ocilia (rather than the inner hair cells) determines the length of the outer hair cells. Both hypotheses may be

partially true, but either hypothesis yields a similar result; the outer hair cells change their length (and hence

the resonant properties of the BM) in response to the motion of the BM. A third hypothesis suggests that the

stereocilia, rather than the outer hair cells, may act to adjust the resonant properties of the BM (see [Yates,

Figure 3.17: Minimum audible field for a

range of frequencies.
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directly as it only operates in live, undamaged cochlea. It is known that the inner hair cells are

connected to the auditory nerve mainly by afferent fibres, which transmit neural signals to the

brain. Conversely, the outer hair cells are predominantly connected to the auditory nerve by

efferent nerve fibres, which receive neural signals from the brain. It is also known that the

outer hair cells change their length by up to 10% due to feedback from the brain. Finally, the

sharp tuning and amplitude dependence of resonances on the BM, and the large dynamic range

of the human auditory system cannot be explained without some external feedback loop which

returns energy into the system. Hence, though it is as yet unproven, the existence of the coch-

lea amplifier will be accepted as a probable mechanism of auditory perception throughout this

project.

The cochlea amplifier acts as a sophisticated automatic gain control mechanism within the hu-

man ear, and causes human listeners to have a logarithmic perception of loudness. This should

come as no surprise to audio engineers, who usually measure levels and responses in decibels

(dB) which is a logarithmic scale (20*log10 amplitude). It is the AGC function of human hear-

ing that causes humans to hear this way. It also extends the dynamic range of human hearing

(the ratio of smallest to largest detectable pressure difference) from the 103 that would be

achieved with the inner hair cells alone, to 106.

The net result so far is to take an audio signal, which has a relatively wide-bandwidth, and

large dynamic range, and to encode it for transmission along nerves which each offer a much

narrower bandwidth, and limited dynamic range.

Any information lost due to the transduction process within the cochlea is not available to the

brain; the cochlea is effectively a lossy coder. The vast majority of what humans cannot hear is

attributable to this transduction process.

                                                                                                                                                         

1995] for a review). As this hypothesis is the least likely of the three, it is not considered further within this

research.
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3.2.5 Neural signal processing

The function of each individual stage of the subsequent neural processing is less well under-

stood (see Figure 3.1(d)). Some features can be predicted by comparison between the auditory

nerve signal, and the final perception of sounds common to all listeners. Other processes can

be inferred from the neural connections present between auditory processing centres. The ac-

tion of individual cells within each processing centre can be recorded.

3.2.5.1 Cochlea Nucleus

The Cochlea Nucleus contains many cells, and has neural connections to the auditory nerve,

superior olivary complex and the inferior colliculus. The cochlea nucleus is thought to sharpen

and enhance features of the (now highly compressed) signal from the auditory nerve, and dis-

tribute it to the superior olivary complex and the inferior colliculus.

3.2.5.2 The Superior Olivary Complex

The Superior Olivary complex is believed to

be responsible for the lateralisation of sound

sources. As with all the processing discussed

thus far, two SOCs are present within the

auditory system, one corresponding to each

ear. However, nerve fibres from both ears feed

into each SOC.

Within the SOC there is a region called the

Medial Superior Olive, where nerve fibres

from similar frequency regions in each ear meet. It is believed that the MSO calculates interau-

ral time differences via a series of delays and co-incidence detectors. This concept was first

proposed in [Jefress, 1948], and measurements carried out by [Patterson, WEB-3] appear to

confirm the presence of this processing.

It is sometimes stated that the MSO is most effective at lower frequencies (below about

1.5 kHz), where interaural time difference is the dominant lateralisation cue. However, this

assumption arises from the results of lateralisation measurements carried out using pure tones.

If a signal contains no spectral components below 1.5 kHz, it can still be lateralised using the

ITD cue alone if the envelope of the signal is modulated at a rate below 1.5 kHz. This meas-

Figure 3.18: Neural connections of the bin-

aural pathway



THE HUMAN AUDITORY SYSTEM

53

ured response suggests that nerve fibres corresponding to frequencies higher than 1.5 kHz must

be processed within the MSO.

Another region within the SOC, called the Lateral Superior Olive, calculates the interaural

intensity difference. This is the dominant lateralisation cue for pure tones above 1.5 kHz, and

is a useful cue for all sounds containing high frequency components. Within the right-hand

SOC, inputs from the right-hand ear act to excite the LSO, and inputs from the left-hand ear act

to inhibit the LSO. The opposite is true within the left-hand SOC. Thus, the ILD is reflected by

the relative activity within the two MSO regions.

The density of detectors is not equal for all values of ITD and ILD. Rather, both sets of detec-

tors are most plentiful for the region around zero interaural difference, and the number of de-

tectors falls as the interaural difference increases. The result is that the human auditory system

is less sensitive to large interaural differences, and sounds at source locations which yield these

differences are localised with decreased accuracy. The best localisation performance occurs for

sources directly in front of the listener, which yield approximately zero interaural time and

level differences.

Whilst the physiology is unknown, experimental data proves that the outputs of the SOC are

post-processed in a special manner. The binaural system is known to be “sluggish” – that is, it

requires a finite time in order to detect any change in the binaural aspect of an input stimulus.

This is true in both binaural localisation and detection tasks. For example, the minimum audi-

ble angle separating two sequential sound sources is approximately 1° where the two sounds

are temporally separated by several hundred milliseconds [Mills, 1958]. However, [Perrot and

Pacheco, 1989] show that by reducing the time between the two sounds to 40 ms, the minimum

detectable angle is increased to 3°. Similar effects have been measured with respect to the Bin-

aural Masking Level difference. For example, modulating the interaural correlation of the

masking noise at a frequency higher than 2 Hz almost destroys the BMLD [Grantham and

Wightman, 1979].

This binaural sluggishness is not a defect of the auditory system. On the contrary, forming im-

mediate localisation determinations based upon the instantaneous output of the SOC would

give rise to error. Whilst textbook determination of the interaural time delay of white noise

yields a single sharp peak, correlation of real world signals gives rise to many brief false peaks.

These may be due to the periodic nature of the input signal, the happenstance coincidence of
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two unrelated auditory events, or the interference from early reflections. (It is worth nothing in

passing that the precedence effect is chiefly accounted for by pre-processing, especially the

response of the inner hair cells [Theis, 1999], rather than the subsequent integration). Integra-

tion of the correlator output removes most of this anomalous information, whilst strengthening

the lateralisation cue.

3.2.5.3 Subsequent neural processing

Little is known of the following stages of neural processing, other than their existence, and the

fact that they give rise to our human “understanding” of the sounds around us as speech, mu-

sic, and noise.

The neural processing which cannot be related to known auditory performance will not be dis-

cussed here. For more information about the auditory neural pathway, and the structure of the

processing centres, the reader is directed to [Ehret and Romand, 1997] and [Anon, web].

3.3 Conclusion

In this chapter, the path of a sound wave has been followed from outside a listeners head, past

the pinna and ear canal, into the cochlea, onto the basilar membrane, through the inner hair

cells, along the auditory nerve, and into the higher processing centres.

The function of each stage of the human auditory system has been qualitatively discussed.

Where available, experimentally measured human auditory performance data has been refer-

enced. The frequency selectivity of the basilar membrane has been identified as the primary

source of spectral masking. The adaptation of the hair cells has been suggested as the source of

temporal masking. A neural contra-lateral coincidence detector has been suggested as the pri-

mary localisation cue.
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4 

Auditory Perceptual Models

4.1 Overview

An auditory model simulates human hearing. Such a model can be used to calculate the per-

ceived difference between two audio signals. This chapter commences with a discussion of the

various approaches to auditory modelling. As an example, the classic Johnston model is ex-

amined in detail, and the strengths and weaknesses of this model are assessed. Several models

that are more recent are compared, and important areas for development in the present work

are identified and discussed.

4.2 Auditory modelling

In order to explain approaches to auditory modelling, it is necessary to start with a generalisa-

tion, the limits of which will soon become apparent. The generalisation is this; there are two

distinct approaches to modelling human hearing which have been pursued by researchers in

different areas.

Psychoacousticians use the physiology of the human auditory system as a reference, and

simulate the processing found therein. The resulting auditory models are often complex and

computationally burdensome. The accurate simulation of auditory processing gives rise to

measurable effects, such as spectral masking. For this reason, models of this type will be re-

ferred to as models of cause. The success of such models is judged by their ability to mimic

human performance in psychoacoustic tests.
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Audio engineers use the measured performance of human hearing as a reference, and directly

model the known limitations. The resulting models are comparatively simplistic, and the ef-

fects of the human auditory system (e.g. spectral masking) are explicitly calculated within the

model. For this reason, models of this type will be referred to as models of effect. These mod-

els are often computationally efficient. Their success is judged by their ability to determine the

perceived quality of an audio signal.

In reality, most models lie somewhere between these two exaggerated extremes. Psychoacous-

ticians often produce “signal processing” versions of complex models that yield similar results

via simplified methods. For example, rather than modelling the response of each individual

hair cell, the firing probability for large groups of cells may be computed. In this way, the

“cause based” model becomes less like the system it aims to simulate, but the overall effect of

the model is barely changed.

In contrast, audio engineers often refine models that simulate the “effects” of human hearing

such that the model comes to match the processes present in the auditory system more closely.

For example, all auditory models must transform data from the time domain into the frequency

domain. An FFT may be used to transform blocks of data, but such an approach can often hide

audible problems in the signal that the model aims to detect. One common solution is to use a

filterbank, which gives a time to frequency transformation, without the block processing prob-

lems inherent with an FFT. The use of a filterbank mimics the processing which occurs within

the auditory system, and moves the operation of the effect model much closer to that of a cause

model.

Thus, when attempting to model human hearing, there are two different, but parallel ap-

proaches: model the cause or process that gives rise to some effect, or model the effect di-

rectly. In practice, there are many possibilities lying between these two extremes for each pro-

cess (and associated effect) within the auditory system.

One useful approach that lies on a tangent somewhere between the two extremes is to map the

signal into the perceptual domain. This approach is discussed in [Hollier, et al, 1993+1995].

As shown in Chapter 3, the human auditory system operates in a logarithmic domain in both

frequency and amplitude perception. By transforming the signal into a domain that corresponds

to the human auditory system’s internal processing, a clearer idea of the human perception of

the signal can be gained than by examining the linear time-domain signal. This is true even if
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no attempt is made to model the masking due to the auditory system, or the processes that give

rise to it.

The aim of the present research is audio quality assessment. The task is to calculate the per-

ceived difference between two signals: the original signal, and a coded version of the same

signal. The arithmetic difference between the two signals is coding noise, which may or may

not be audible.

There are two ways to use an auditory model to calculate the perceived difference. The first

method is to calculate the masking threshold due to the original signal. Any noise below the

threshold is inaudible, whilst any noise above it is audible (Figure 4.1 a). This method is used

by some models of effect.

The second method is to pass both signals through the auditory model in parallel (Figure 4.1

b). The auditory model transforms each signal into a representation of what is heard by a hu-

man listener, e.g. an internal representation. A comparison of the two internal representations

yields a prediction of the audible difference between the two signals. The comparison may be

made via a simple subtraction, or by complex analysis. If the result is zero, then the model pre-

dicts that there is no audible difference between the two signals. A numerical result other than

zero indicates how large the perceived audible difference is likely to be.

(a) Prediction: model of effect calculates masking threshold

(b) Comparison: model of cause calculates internal representation

Figure 4.1: Methods of determining perceived difference. (a): prediction  (b): comparison
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Some models of cause use a detector (optimum or sub-optimum) to compare the original signal

to the degraded signal after both have passed through the auditory model in parallel. Depend-

ing on the accuracy of the auditory model, and the nature of the difference between the two

signals, the detector may need to be crippled in some manner to match human performance.

The process is not usually deterministic, but stochastic. This matches human perception, and is

often achieved by adding noise to the detection process itself.

The perceptual domain analysis gives an indication of the perceived difference between two

signals, but since it does not include calculations of masking, it cannot determine whether any

difference is audible or inaudible. Adding masking calculations to the perceptual domain

analysis may turn it into a model of effect, allowing the masking threshold to be computed di-

rectly.

In conclusion, an auditory model may be based upon the processes found within the auditory

system, or the effects to which these processes give rise. Most models use a combination of

these two approaches. To predict the audible effect of a coding scheme, the coding noise may

be compared with a prediction of the masked threshold due to the original signal. More com-

monly, both the original and coded signals are transformed into internal representations, and

these are compared.

It is hoped that this overview has set the scene for the dissection of auditory models that fol-

low. This will commence by examining a classic model of effect, the Johnston auditory model.

4.3 The Johnston model

In 1988, James Johnston published details of a model for calculating the “perceptual entropy”

of audio signals [Johnston, 1988a]. This model calculates the masked threshold due to an audio

signal in order to predict which components of the signal are inaudible. In this way, the model

can be used to predict how much data is needed to transparently code the signal. The model is

included in an audio coder [Johnston, 1988b], where the prediction of inaudible components is

used to feed a bit allocation algorithm which reduces the data rate to 128 kbps for a mono sig-

nal.

The Johnston model is used in an audio coder, but the present research goal is a model to as-

sess the quality of coded audio. Using the Johnston model for this purpose may be unwise –
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any audible problems introduced by the model within the coder are unlikely to be detected by

using the same model as an assessor. However, there are three reasons why the Johnston model

is an excellent starting point for the current research. Firstly, examining the operation of a

coding model will give valuable insight into areas where coded audio may be non-ideal, and

hence the quality assessment model must be particularly vigilant. Secondly, the “basic” quality

assessment model in the current ITU-PEAQ standard [Thiede et al, 2000] is similar to the

Johnston model, indicating that for some applications, this model does an acceptable job of

predicting perceived audio quality. Thirdly, most current auditory models are similar to the

Johnston model, and some of the principles involved are universally accepted.

The Johnston model calculates the spectral masking due to an audio signal, but temporal

masking is not addressed. Though the human auditory system is continuous in both time and

frequency, the spectral masking estimate calculated by the Johnston model is discrete in time

and frequency. The signal is split into short (64 ms) frames, and the spectral masking for each

frame is computed as if the signal were steady state. The masking is computed for 25 fre-

quency bins, spaced equally on the critical band scale. Thus one masked threshold is calculated

for each frequency bin every 64 ms. This threshold is calculated by taking the FFT of a 64 ms

frame, summing the energy in each frequency bin, spreading the energy to simulate spectral

masking, adjusting for the nature of the signal, and normalising the result.

The following detailed walk through the Johnston auditory model is drawn from [Johnston,

1988a], [Johnston, 1988b], and [Rimell, 1996]. A MATLAB implementation of the model is

included on the accompanying CD-ROM. This implementation is taken as a baseline for the

current research; differences from the published sources are noted in italics. The plots show the

progress of a synthetic signal (consisting of a 500Hz tone and a 5kHz tone) through the model.
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4.3.1 Algorithm

4.3.1.1 Window and FFT

The audio signal is split into frames. In the

original model, a frame length of 64ms is em-

ployed (2048 samples at a sampling frequency

of 32kHz). In the present implementation, a

default length of 23ms is used since this is a

convenient and perceptually appropriate time-

span, as discussed in [Paillard et al, 1992].

This is equivalent to a window  length of 1024

samples at a sampling frequency ( sf ) of

44.1kHz, though the MATLAB variable win-

dow is easily changed to accommodate any

window length.

The current frame is windowed with a Hanning (raised cosine) window and an FFT (Fast Fou-

rier Transform) is performed. Each line ( n ) in the complex FFT refers to a spectral component

of frequency f  (in kHz), given by

window

fl
nf s

*1000

.
)( = , (4-1)

which is valid for the first )2/(window  complex lines.

4.3.1.2 Critical Band Analysis

The real and imaginary components of the spectrum )Im(),Re( nn from the FFT are converted

to the power spectrum, P(n), thus:

)(Im)(Re)( 22 nnnP += (4-2)

This power spectrum is segregated in linear frequency, but the auditory system processes fre-

quency on a near logarithmic scale, called the critical band scale, as discussed in the previous

chapter.

Figure 4.2: f(n) Signal Spectrum
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The relationship between linear frequency, f  in kHz, and the critical band, or Bark frequency,

cz in Bark, is given by

( ) ]
5.7

arctan5.376.0arctan13[1
2







++=

f
fzc , (4-3)

adapted from [Zwicker and Terhardt, 1980] to

number critical bands from 1 to 25. If the low-

est frequency component falling in critical

band i , where )int( czi = , is given by ibl , and

the highest frequency component falling in

critical band i  is given by ibh , then the sum-

mation of the energy in band i  is given by:

∑
=

=
i

i

bh

bln
i nPB )( (4-4)

The energy in each critical band is summed in

this manner. The D.C. component of the spec-

trum is not included in this summation.

4.3.1.3 Spreading function

The following spreading function (taken from

[Schroder et al, 1979]) is used to estimate the

effects of masking across critical bands.

( ) ( )2
, 474.015.17474.05.781.15)dB( ++−++= yyS ji , dB (4-5)










= 10

)dB(

,

,

10
jiS

jiS (4-6)

Figure 4.3: Bi Critical Band Energy

Figure 4.4: Sij Spreading Function



AUDITORY PERCEPTUAL MODELS

62

where:

y = ji −  (not the modulus, as stated in

some other papers)

i = Bark frequency of masked signal

j = Bark frequency of masker signal

The spread critical band spectrum is calculated

by convolving the spreading function with the

critical band spectrum. This can be achieved

by matrix multiplication, thus:
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4.3.1.4 Coefficient of tonality

The masking threshold for noise masked by a tone is taken to be i+5.14  dB below iC , but the

masking threshold for a tone masked by noise is taken to be 5.5  dB below iC  [Johnston,

1988b]. Johnston uses the Spectral Flatness Measure (SFM), calculated from the geometric and

arithmetic means of the power spectrum, to determine how tone-like or noise-like the signal is.

The SFM is given by







=

AM

GM
SFM dB 10log10 (4-8)

However, this calculation cannot be performed correctly using 32-bit floating point arithmetic.

In the current implementation, the SFM is calculated using logarithms, thus:

( ) ( )]log[log10)dB( 1010 AMGMSFM −= (4-9)

Figure 4.5: CI Spread CB Spectrum
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where

( )∑
=

=
N

n

nP
N

GM
1

1010 )(log
1

)(log , (4-10)









= ∑

=

N

n

nP
N

AM
1

1010 )(
1

log)(log (4-11)

and 2/windowN = . An SFM  of zero dB would indicate that the signal is entirely noise like,

while an >=SFM maxdBSFM , where dB60max −=dBSFM , would indicate that the signal is

entirely tone like. Most tone like signals, such as organ, sine waves, or flute have an SFM  that

is close to or over the limit. A coefficient of tonality is calculated as follows:









= 1,min

maxdB

dB

SFM

SFM
α (4-12)

This coefficient is used to geometrically weight the two thresholds, yielding iO , the threshold

offset, thus:

5.5)1()5.14( αα −++= iOi (4-13)

Though this final equation is linear, equations (4-9) to (4-13) yield the required geometric

weighting.

4.3.1.5 Spread threshold estimate

The offset iO  is subtracted from the spread

critical band spectrum iC  to give the spread

spectrum estimate iT , thus:

)10/()(log1010 ii OC
iT −= (4-14)

Figure 4.6: TI Spread Threshold Estimate



AUDITORY PERCEPTUAL MODELS

64

4.3.1.6 Re-normalisation of the threshold estimate

This process is suggested in [Johnston,

1988b], though the details in [Johnston,

1988a] seem incomplete. The overall effect is

comparatively small (2.04 dB by this calcula-

tion). The implementation here is as follows.

The spreading function described in Section

4.3.1.3 increases the overall energy, where as

the psychophysical process that we are at-

tempting to model spreads the energy by dis-

persing it. For example, examine the behaviour

with a hypothetical stimulus with unity energy

in each critical band. The actual spreading function of the ear will result in no overall change

to the level of energy in any critical band1. However, the spreading function presented here

will cause the energy in each band to increase, due to the additive contributions of energy

spread from adjacent critical bands.

The solution presented here is to normalise the threshold estimate at this stage. A hypothetical

stimulus, with unity energy in each critical band, is used as the iB  in equation (4-7), to give the

spread spectrum error, EiC , thus:
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1 In reality the lowest and highest bands will loose energy by this process, but all other bands

will loose and gain equal amounts of energy by dispersion, hence the total level of energy in

each band will remain unchanged.

Figure 4.7: Ti
′

Normalised threshold estimate
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The normalised threshold estimate '
iT  is calculated by converting EiC  into dB, and subtracting

it from the threshold estimate, thus:

( )Eiii CTT 10
' log10−= (4-16)

4.3.1.7 Conversion to dB SPL

In the original model, Johnston set the abso-

lute level such that a signal of 4kHz, with peak

magnitude of ±1 least significant bit in a 16-bit

integer, is at the absolute threshold of hearing.

A more sophisticated approach is taken in the

present implementation which takes into ac-

count the replay level of the audio signal.

To include the absolute threshold of hearing

(the Minimum Audible Field, or MAF) in the

masking threshold estimate, it is necessary to

relate the digital audio signal to a real listening

level. It is suggested in [Stuart, 1990] that a 105 dB sound pressure level (SPL) at 1 m from the

speaker is a typical maximum level for listening in the home. The author pities Bob Stuart’s

neighbours! A quieter 90 dB SPL reaching the listener is chosen as the default value here.

The threshold estimate is corrected relative to this level as follows. A full scale 1 kHz sine

wave undergoes the windowing, FFT, and conversion to power spectrum as described in Sec-

tions 4.3.1.1 and 4.3.1.2. This yields the calculated power of the sine wave, (dB)refP . The differ-

ence between this calculated power and the specified loudness level of 90dB is added to the

normalised threshold estimate (in dB), thus:

)-dB90( (dB)
''

)dB( refispli PTT += (4-17)

Figure 4.8: Ti
′ Normalised Threshold

Estimate in dB SPL



AUDITORY PERCEPTUAL MODELS

66

4.3.1.8 Inclusion of Minimum Audible Field threshold information

The minimum audible field information is taken from [Robinson and Dadson, 1956]. The con-

version to dB SPL is carried out using the reference of the MAF threshold at 2kHz being

equivalent to 0 dB SPL [ISO 389-7, 1996]. The minimum threshold in each critical band, iM

is taken to be the lowest value of the MAF curve falling within that band.

Johnston uses the median MAF value in each band. His approach may predict a sound as be-

ing masked when in reality it is audible, whereas the approach chosen here may predict that a

sound is audible when in reality it is masked. This is preferable for detecting the noise added

by an audio coder. However, these differences occur only at very low (and very high) frequen-

cies, where the slope of the MAF curve gives rise to a large discrepancy between the median

and the minimum value.

Hence, the final threshold estimate is given by

( )isplii MTT ,max '
)dB(

'' = . (4-18)

 

Figure 4.9: Mi Minimum Audible Field Figure 4.10: Ti
′′ Final Threshold Estimate

in dB SPL in dB SPL, including MAF
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4.3.1.9 Threshold interpretation

The Johnston model was designed to identify the least important spectral regions of an audio

signal in order to control the bit allocation algorithm of an audio codec. The present task is to

judge perceived audio quality. Both tasks require the identification of inaudible signal compo-

nents, but whereas the former task requires prediction of such from a single signal, the latter

requires a comparison between original and processed signals to determine the presence of an

audible difference. In this section, the use of the Johnston model threshold estimate in these

tasks is discussed.

There are at least three ways in which to interpret the threshold estimate, as follows.

1) All spectral components below the masked threshold are inaudible, and may be removed at

will, without audibly changing the signal

2) Any spectral components which, on their own, would fall below the masked threshold,

may be added to the signal without causing an audible change.

3) Two signals will sound identical if the spectral components lying above the masked

threshold are identical.

Interpretations 1 and 2 are the ones for which this model is designed, and are used by audio

coders, including [Johnston, 1988b]. In reality, the coder does not remove all spectral compo-

nents below the threshold estimate, nor does it fill the entire spectral space below the threshold

estimate with noise. However, the coder does treat all spectral components below the threshold

estimate as being less important, as discussed in Chapter 2. In extreme circumstances, it may

remove some of them entirely, but it is unlikely to strip all masked components neatly away –

that is not its function. This fact is mentioned here to dispel this common misconception,

which is a gross simplification. The usual mode of operation is to represent the spectral com-

ponents below the threshold estimate with decreased accuracy by using coarser quantisation

steps. This has the effect of adding noise within the spectral regions below the threshold esti-

mate. However, the aim is not to add as much noise as possible, but rather to incur as much

noise as is necessary to meet the bitrate requirements, whilst constraining the noise to be below

the threshold estimate.
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In an audio coder, interpretations 1 and 2 are not pushed to their limits. If the bitrate is suffi-

ciently high, then coding noise will be significantly below the threshold estimate. If the bitrate

is too low, then noise may be added above the threshold estimate. However, since the coder

will breach the threshold estimate to meet bitrate requirements, the absolute value of the

threshold estimate is less important than the shape (in the time and frequency domains) which

should cause the coding noise to be minimally audible. Conversely, in the assessment of per-

ceived audio quality, the absolute value of the threshold is vitally important, since the aim is to

judge whether coding noise is audible or inaudible.

When assessing the perceived quality of coded audio, we assume access to the original signal,

the coding noise, and the resulting coded signal2, thus:

codednoiseoriginal =+ (4-19)

Interpretations 1 and 2 only require knowledge of the original signal and the noise, be it addi-

tive or subtractive. From this knowledge, the audible difference between the original and coded

signals may be inferred.

The third interpretation is different. It says, “two signals will sound identical if the spectral

components lying above the masked threshold are identical.” This requires knowledge of the

original signal and the altered signal, and implies a comparison of the two. Though this inter-

pretation appears similar to the first two, it is a fundamentally different concept. Consider, for

example, the case where the original signal and the coding noise are highly correlated. The

noise may be below the masked threshold (hence judged inaudible by 2), but when summed

with the original signal, some components may add constructively, thus yielding new or altered

spectral components above the masked threshold (hence judged audible by 3). Interpretations 1

and 2 rely on rules to predict what will be audible. Interpretation 3 relies on a comparison be-

tween two signals to measure the difference.

In conclusion, the masked threshold estimate can be used to determine whether there is an

audible difference between two signals either by examining the original signal and predicting

                                                  

2 Only the original and coded signals are usually available. For high quality coded audio, the

synchronisation of these two is trivial, hence the noise may be calcualted via subtraction.
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the allowable coding noise, or by examining the difference between the original signal and the

coded signal. These two possibilities will be referred to as the predictive measure, and the

comparative measure.

4.3.2 Verification: Psychoacoustic test.

To verify the performance of the model, a simple, repeatable test of audibility is required, in

which the performance of the model can be compared to that of a real human listener. A suit-

able psychoacoustic test is the determination of masked threshold. In such a test, a human lis-

tener is required to detect one sound (the target) in the presence of another (the masker). The

level at which the target is just audible is called the threshold of masking, or masked threshold.

To verify the performance of the Johnston model, two simple tests are used: noise masking

tone, and tone masking noise. These two properties are incorporated in the model, as described

in Section 4.3.1.4, so it is reasonable to expect the model to match human performance in these

tasks.

For the predictive measure, the masked threshold estimate calculated by the Johnston model is

used directly to determine whether a target is audible; any target above the threshold estimate

is judged to be audible. For the comparative measure, the masker and masker + target are com-

pared, and any differences above the threshold estimate are judged to be audible.

4.3.2.1 Noise Masking Tone

This experiment was carried out using human listeners in [Reed and Bilger, 1973] and the

results presented in that paper are used as a reference. The masking noise is at a spectrum level

of 35 dB/Hz. The target, a 1 kHz tone, is just audible at a level of 45 dB. Figure 4.11 shows the

threshold estimate calculated by the Johnston model, and also shows the 45 dB tone. The tone

is nearly 10 dB below the threshold estimate. Using the predictive measure, the model

incorrectly judges the tone to be inaudible.
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The results of the comparative measure are more promising. Comparing the spectrum of the

masker with that of the masker + target (Figure 4.12) reveals that there is a small difference

above the threshold estimate, indicating that this difference is just audible. The audible differ-

ence plot (in black) is calculated by subtracting the spectra of the two signals where they lie

above the threshold estimate. The blip visible at the centre of the audible difference plot shows

that there is a 1 dB difference between the masker and the target + masker – this is enough to

be detected, and matches the performance of a human listener.

For this example of noise masking tone, the predictive measure did not give a direct prediction

of masked threshold. However, the comparative measure correctly delineated the audible dif-

ference between the masker and masker + target signals.

The model is designed from the results of simple masking experiments, yet it apparently can-

not reproduce the results of such experiments when the threshold estimate is interpreted as

originally intended (as a prediction measure). Before rejecting the predictive measure, other

possible sources of error will be examined.

The short-term windowing of a noise signal gives a false indication of its spectrum, a fact

which may be interfering with the masking calculation. The true long term spectrum of the

noise is flat from 20 Hz to 20 kHz, but the spectrum shown in picture Figure 4.11 is far from

flat. Subsequent snapshots give differing spectra. However, at no time does the threshold

Figure 4.11: Noise Masking Tone

target below threshold estimate

model prediction = inaudible (incorrect)

Figure 4.12: Noise Masking Tone

masker vs masker + target difference above
threshold estimate

model prediction = audible (correct)
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estimate fall enough to cause the 45 dB tone to be judged audible, so this problem is not

causing the discrepancy in the prediction measure.

Another explanation for the failure of the model is the windowing and FFT process, because it

disperses the energy of the signal in the spectral domain. The frequency domain representation

of a pure sine wave is infinitely narrow, but the FFT of a windowed pure sine wave has a finite

spectral width, determined by the shape and length of the window function. As the length of a

sine wave decreases, it becomes less well defined, since fewer wavelengths fall within the

window. Hence, a shorter window will cause greater spectral dispersion. Narrow- and wide-

band noise signals are also dispersed, but with one important difference. The spectrum of white

noise is distributed evenly, so dispersion does not alter its peak or average value. Unfortu-

nately, the peak value of the sine wave spectrum is significantly reduced by the dispersion. The

result is that white noise with a spectrum level of 35 dB/Hz appears at the same level after the

windowing and FFT. A pure tone of 45 dB appears to have a much lower peak power when

passed through the same process.

In the model, the conversion to dB SPL is carried out with reference to a sine wave. Conse-

quently, the conversion corrects for the reduction in peak sine wave level, but in doing so, it

over amplifies noise-like signals. This is clearly visible in Figure 4.11, where a 35 dB/Hz band

of noise appears at 50 dB/Hz.

Increasing the window length may help to solve the problem. The original Johnston model uses

a 64 ms window, whereas the present implementation uses a 23 ms (1024 sample) window. In

the current test, increasing the window length to 4096 samples (93 ms) reduces the error from

8.2 dB to 6.1 dB. However, the variance from one snapshot to another is slightly greater than

this value, so the improvement is not significant. This problem will be discussed further after

the next test.

In conclusion, for this psychoacoustic experiment, the Johnston model does not predict human

perception if the prediction measure is used, but does so if the comparison measure is em-

ployed.
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4.3.2.2 Tone Masking Noise

This experiment was carried out using human

listeners in [Moore and Alcántara, 1998] and

the results from this paper are used as a

reference. The masking tone is at a level of 85

dB SPL and a frequency of 1 kHz. The target

noise band ranges from 960 Hz to 1040 Hz,

and is just audible at a level of 45 dB/Hz.

Figure 4.13 shows the Johnston model thresh-

old estimate for the masking tone. Using the

predictive measure, the model predicts that the

target noise is audible, since the spectrum of

the target (green) goes above the threshold es-

timate (blue), as shown in Figure 4.13. If the

level of the noise is reduced by 1 dB, the model still predicts that it is audible. A reduction of

2 dB is required for the model to predict that the noise is inaudible. Hence, the model over es-

timates the masked threshold by 1.5 dB, but such a margin of error may be acceptable in a

masking threshold determination. If the window length is increased to 4096 samples, the model

under estimates the masked threshold by 0.5 dB. This is a trivial error, but again indicates that

the choice of window length can be important.

The comparative measure works less well in this case. With a window length of 1024 samples,

the model predicts a just audible difference, but in entirely the wrong frequency region (Figure

4.14). Switching to a window length of 4096 samples, the model predicts an audible difference

of 0.5 dB with the noise 5 dB below threshold (i.e. inaudible to a human listener). At the true

masked threshold, the model still predicts an audible difference of 0.5 dB (Figure 4.15). As the

level of the noise is increased beyond this, for every dB above masked threshold, the predicted

audible difference also increases by 1 dB.

Figure 4.13: Tone Masking Noise

target above threshold estimate

model prediction = audible (correct)
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In this experiment, a predicted audible difference of 0.5 dB is inaudible to human subjects.

Having an inaudible “audible difference” may sound like nonsense, but it may indicate that a

different mechanism is at work here. The threshold estimate is a calculation of masking. How-

ever, the comparative measure requires that, within audible spectral regions, the sound must be

identical to a second sound in order to be perceived as identical. Studies have shown that this is

not the case. If two tones of the same frequency are presented sequentially, it is sometimes im-

possible to detect any amplitude difference between the two tones of less than 1 dB. For this

reason, it may be reasonable to expect “audible differences” (i.e. differences above the masked

threshold) to be inaudible if they are less than 1 dB. In this experiment, adding a 1 kHz tone

and a 1 kHz band of noise may simply increase the amplitude of the tone, making the task

similar to the one outlined above.

For this example of tone masking noise, the threshold estimate gave a direct prediction of

masked threshold, showing that the prediction measure gives a correct result for this experi-

ment. Comparing the masker with the masker + target, the threshold estimate correctly deline-

ated the audible difference between the two, if a difference threshold of 1 dB was introduced.

This demonstrates that a modified version of the comparative measure gives a correct result for

this experiment.

Figure 4.14: Tone Masking Noise

masker vs masker + target difference above
threshold estimate, but at wrong frequency!

model prediction = audible (correct)

Figure 4.15: Tone Masking Noise

masker vs masker + target difference above
threshold estimate

model prediction = audible (correct)
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4.3.2.3 Discussion

Three significant issues are raised by these tests.

Firstly, the predictive measure doesn’t correctly predict the threshold of the noise masking tone

experiment. As discussed in Section 4.3.2.1, this may be due to the dispersion of energy in the

spectral domain inherent in the windowing and FFT process. In this test, one signal is infinitely

spectrally narrow, while the other occupies the maximum spectral bandwidth of the system.

This difference in signal bandwidth maximises the discrepancy due to dispersion. Such a large

discrepancy would not occur in the intended use of the model, where the codec noise is de-

signed to occupy a similar spectral space to the original signal.

Secondly, the comparative measure requires a threshold value in order to predict the masked

threshold correctly.

Thirdly, the Johnston model commences with a windowing and FFT operation. This test has

shown that, even in a simultaneous steady state masking experiment, where temporal effects

are relatively unimportant, the window length is important.

In conclusion, the comparative measure, with a threshold value around 1 dB, may be used with

some confidence. The effect of window length is discussed further in Section 4.3.4.3.

4.3.3 Assessing Audio Quality using the Johnston model

In this section, the Johnston model is used to predict perceived audio quality. An existing sub-

jective test employing a panel of human listeners is used as a reference. The test is repeated

here with the human listeners replaced by the Johnston model. The quality assessments of the

Johnston model are compared to those of the listening panel to evaluate how accurately the

model predicts human perception.

The human perception of the quality of various audio codecs is assessed in [Soulodre et al,

1998]. The results are presented as diffgrades, which indicate the audible difference between

the original and coded signals. The scale ranges from 0 to –4, where 0 indicates that the origi-

nal signal and the coded signal sound identical, and –4 indicates that the differences between

the original and coded signals are “very annoying”.
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A variety of audio codecs are tested in the paper, using eight different audio samples. One of

the most challenging audio samples is the Harpsichord (Track 40 from [EBU, 1988]). This

audio sample is used in the present test.

Unfortunately, the reference versions of the audio codecs employed in the published test are

not generally available. However, MPEG-1 layer III, MPEG-2 AAC, and AC-3 software

codecs have been obtained from the same companies who provided the reference codecs used

in the published test. An MPEG-1 layer II software codec has been obtained from the only

company currently offering such a codec. Thus, the coded audio that will be judged by the

Johnston model is similar, but not identical, to that auditioned by the human listeners in the

original test.

The human perception of audio quality for each codec is shown in Figure 4.16. The diamond

points show the diffgrades from [Soulodre et al, 1998], using the reference codecs.

The author auditioned the decoded audio from each codec, and ranked the results in the order

of preference indicated by the shaded bars in Figure 4.16. This ranking does not correspond to

the diffgrades. This indicates that either the author has a very different perception of sound
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Figure 4.16: Human subjects assessment of audio quality
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quality from the listening panel, or the codecs used here are very different from those used in

the original test. Whilst no two people perceive sound in an identical manner, the author be-

lieves that the codecs are more likely to be at fault. This is borne out not only by over four

years subjective assessment experience, but also by the fact that the most mis-ranked codec

(MPEG-1 layer II) is the one which was not obtained from the same source as the reference

version. The sound of the MPEG-1 layer II codec is an order of magnitude worse than that of

the others on this test. Since the diffgrades do not correspond to the audio samples that will be

presented to the model, the ranking must be used as a reference instead.

The Johnston model will be used with the predictive measure and the comparative measure, as

outlined in Section 4.3.1.9. The audible difference calculated for a single FFT frame is shown

in Figure 4.17. Calculating this over successive frames gives the audible difference surface,

which varies over time and frequency, as shown in Figure 4.18. This rendering of the 3-D

audible difference surface onto a 2-D medium is difficult to interpret. As an alternative, Figure

4.19 shows the same audible difference plotted as a colour image, where the colour at each

point represents the audible difference for that time and frequency, as indicated on the colour

scale to the right. The spectrum of the original signal can also be represented in this manner, as

shown in Figure 4.20. This is similar to a conventional spectrogram, except that the lowest fre-

quencies are shown at the top of the graph, and the frequency scale is linear, rather than loga-

rithmic.

Figure 4.20 shows the first second of the original signal. This section of the signal consists of

the first two notes of an arpeggio. The onset of the first note occurs at t=0 seconds, whilst the

Figure 4.17

Instantaneous audible difference

Figure 4.18

Audible difference surface
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onset of the second note occurs at t=0.75 seconds. The reader should note that both these on-

sets are apparent in Figure 4.20, as is the decaying high frequency spectrum as each note dies

away. The features of the audible difference colour image plot (Figure 4.19) can also be inter-

preted. The horizontal blue bands represent spectral components that have been removed by

the codec, whilst any red areas represent noise that has been added by the codec. If this audible

difference plot matches human perception, then the codec shown in Figure 4.19 is removing

many audible spectral components. There is no predicted audible difference at high frequency

(the bottom of the plot). The reason is that, whilst there are differences between the original

and coded signals within this frequency region, the Johnston model predicts that these will all

lie below the minimum audible threshold, and hence will be inaudible.

The following audible difference plots represent the Johnston model’s assessment of the coded

audible from the subjective test. The codecs are presented in the order in which a human lis-

tener ranked them, with the best first. If the Johnston model does match human perception,

then some trend should become apparent. The left-hand plots are calculated by the predictive

measure, the right-hand plots by the comparative measure.

Figure 4.19

Audible difference colour image plot

Figure 4.20

Original signal colour image plot
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Figure 4.21 (a) Johnston Model audible difference predictions for codecs under test



AUDITORY PERCEPTUAL MODELS

79

A
A

C
 9

6 
kb

ps
: -

1.
0

L
3 

12
8 

kb
ps

: -
2.

1
L

2 
19

2 
kb

ps
: -

1.
2

L
2 

16
0 

kb
ps

: -
1.

9

predictive measure comparative measure

Figure 4.21 (b) Johnston Model audible difference predictions for codecs under test



AUDITORY PERCEPTUAL MODELS

80

Meaningful analysis of the audible difference surface is a complex task. Some numerical solu-

tions are discussed in [Hollier et al, 1995]. However, for our present purpose of judging the

ability of the Johnston model to predict human perception, visual examination will suffice.

If the model correctly predicts human perception of audio quality, then some aspect of the

audible difference will become more pronounced as the audio quality is reduced. Unfortu-

nately, this is not universally true. This expectation does hold within each codec family; as the

bitrate is reduced, the sound quality deteriorates, and the audible difference surface becomes

more active. However, across codecs, no relationship between perceived sound quality and the

activity of the audible difference surface is apparent.

A notable case where the Johnston model fails to predict human perception of audio quality is

the AAC 96 kbps codec. Both the listening panel and the author ranked this codec as signifi-

cantly better than any of the layer II codecs. However, the Johnston model predicts a large

audible difference for the AAC codec, where as the audible difference surface for the 192 kbps

layer II codec is quieter overall, with less obvious peaks and fewer spectral components.

This reveals a problem with the Johnston model in particular, and all auditory models in gen-

eral. The auditory model built into the layer II codec is similar to the Johnston model itself.

When the Johnston model assesses the quality of layer II coded audio, it uses the same criteria

as the original codec. Hence, any short comings of the layer II codec are missed by the

Johnston model. For this reason, the auditory model used within a perceptual measurement

comparative measurepredictive measure

Figure 4.21 (c)

Johnston Model audible difference predictions for codecs under test

L
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system must always be more advanced and accurate than those used within the codecs it is de-

signed to assess.

Interestingly, the AAC codec contains a more advanced auditory model than that of Johnston,

and in this instance the Johnston model “hears” problems that are not apparent to human lis-

teners. This demonstrates that, where the assessment model is inferior to a given codec, the

model may mistake inaudible noise as being audible, since the codec is aware of a type of

masking which the model does not calculate.

In conclusion, the Johnston model fails to correctly assess perceived audio quality because it is

less advanced than those found within the codecs it has assessed.

4.3.4 Criticism of the Johnston model

The following features are absent, or inadequately addressed in the Johnston model. The aim is

to address all of these issues in the work that follows, in order to develop a model that is capa-

ble of assessing state-of-the-art audio codecs in accordance with human perception.

4.3.4.1 Spectral Masking determination

The Johnston model estimates the spectral masking in each critical band, yielding 25 individ-

ual masking estimates over the entire audio bandwidth. Thus, the masking estimate surface is

constant over each critical band, but discontinuous at the critical band boundaries.

Whilst it is true that 25 critical bandwidth filters would cover the entire audible spectrum, there

are not 25 such filters within the auditory system. Rather, there are many overlapping filters.

The filter characteristic is defined by the response of the basilar membrane at any given point,

as discussed in the previous chapter. The basilar membrane is continuous, though its move-

ment is transduced by individual (discrete) hair cells, which act as detectors. The Johnston

model uses one detector per critical bandwidth, whereas the human auditory system contains

over one hundred. Though the human auditory system is a discrete system, the resolution is so

fine that it is usually assumed to be continuous, since the spectral spread of movement along

the BM, rather than the individual hair cells, is the limiting factor. For this reason, any accurate

estimate of masking should be free from the discontinuities that are inevitable in the Johnston

model.
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4.3.4.2 Temporal Masking determination

The Johnston model does not include a calculation of temporal masking. The window length

sets the time resolution of the model, and this is chosen to be “perceptually appropriate”. How-

ever, temporal masking is highly signal dependent, and is not accounted for by windowing

alone.

The largest temporal masking effect is that of post-masking, where the target signal occurs af-

ter the masker. Figure 4.22 shows the threshold of detecting a 5 ms, 2 kHz tone after an 80 dB

burst of white noise. Figure 4.22 (a) shows the threshold after a 5 ms burst of noise, whilst

Figure 4.22 (b) shows the threshold after a 200 ms burst of noise (from [Zwicker, 1984]). The

time scale is logarithmic, and the noise burst ceases at t = 0 ms. Comparison of the two figures

reveals that the duration of the masker has a significant effect on the decay of masking.

The Johnston model may fail to predict any masking in this situation, a fact that can be demon-

strated by example. The Johnston model calculates the masking estimate on a frame by frame

basis. The default frame-length gives an inter-frame time of about 20 ms. If the noise burst

ceases in the middle of one frame, and the target falls within the subsequent frame, the

Johnston model does not attempt to calculate the masking of one sound by the other. Figure

4.22 (b) shows that, for a human listener, the target tone is masked below a level of 40 dB,

20 ms after the end of the noise burst. This masking is ignored by the Johnston model, and il-

lustrates why temporal masking should be included in the present model.

  

(a) – masker = 5 ms noise burst (b) – masker = 200 ms noise burst

Figure 4.22: Temporal Masking – threshold of detecting 2 kHz tone after white noise



AUDITORY PERCEPTUAL MODELS

83

4.3.4.3 Pre-echo detection

A masker may mask a signal that precedes it. This is known as pre-masking. The effect is

much smaller than that of post-masking (5 ms compared to 200 ms). Whereas the Johnston

model under estimates (or more correctly, doesn’t estimate) post-masking, the effect of win-

dowing is to over estimate pre-masking. This is because a 20 ms time window is used by de-

fault. Whilst any temporal smearing of the signal up to 20 ms will remain undetected by the

Johnston model, such smearing is easily detected by a human listener, due to the 5 ms limit on

pre masking.

Temporal smearing is a common problem with the MPEG-1 layer III audio codec, most readily

demonstrated with the Castanets track from [EBU, 1988]. Typical listener impressions of this

codec include “a softening of transients” and reports that “the sounds of castanets are spread

out in time, sounding more like a whoosh than a sharp crack”. In a subjective test ([Meares et

al, 1998]), it is reported that the diffgrade for this item is –1.6. The audible artefacts include

“temporal distortion, high frequency loss, high frequency distortion”.

The results of the Johnston model’s assessment of this item, via the predicted measure, are shown

in Figure 4.23 and Figure 4.24.

Using the default 2048-sample window length, and the predictive measure, the model calcu-

lates that there is no audible difference between the original and coded audio signals. This is

shown in Figure 4.23 where the coding noise (shown in green) falls below the threshold esti-

mate (shown in blue) for every frame. Halving the window length, to the value suggested in

[Paillard et al, 1992] fails to reveal any audible difference. Switching to a 512-sample window

length, the model finally detects an audible difference between the original and coded signals.

Figure 4.24 shows that a large audible difference is detected in the 3rd and 4th frames, where the

coding noise (green) is above the threshold estimate (blue).



Figure 4.23: 2048-sample window length Johnston analysis of Castanets signal

Mid right: time domain waveform (coded audio), running vertically downwards, with Hanning window functions shown in blue.

Far right: 512-sample analysis (Figure 4.24) shown for comparison.
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Unfortunately, a window length of 512-samples gives a frequency resolution of 86 Hz, and

yields unreliable information about spectral content below 86 Hz. This would be a serious re-

striction for any high-quality audio assessment tool, so the use of a 512-sample window in

isolation can be ruled out.

Figure 4.24: 512-sample window length Johnston analysis of Castanets signal

Left: Time domain waveform (coded audio), running vertically downwards, with Hanning window functions

shown in blue.
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One solution to the many windowing problems may be to perform the calculations of the

Johnston model in parallel using several different window lengths. However, a less cumber-

some solution may be to use a basic transformation that matches both the time and frequency

resolution of the human auditory system. This approach will be considered in the present

model.

4.3.4.4 Non-linearity

The human auditory system is non-linear. In engineering terms, this means that the internal

representation of signal A plus the internal representation of signal B is not equal to the inter-

nal representation of signal A+B. Whilst the masking effects discussed so far may be termed

non linear, there are two specific areas where measurable non-linear behaviour may be relevant

to an audio quality assessment model.

Firstly, the amount of masking varies with the amplitude, frequency, and duration of the

masker. None of these relationships are monotonic, but the variation with amplitude is the

most non-linear. The shape of the spectral masking curve is dependent on the level of the

masker, such that a louder masker produces more masking than a linear masking model would

suggest.

Secondly, intermodulation distortion occurs within the cochlea. Two pure tones presented to a

listener give rise to distortion components that can be heard by the subject, and detected with a

probe microphone. The frequencies of the distortion components are easily calculated, since

they are integer difference frequencies (e.g. 2[f1-f2]). However, the amplitude of distortion

components does not follow any simple rule. This is discussed extensively in Appendix A.

4.3.4.5 Binaural hearing

Human beings listen via two ears, and most current audio material is stereophonic (2-channel).

If this material is replayed via headphones, then a simple channel to ear mapping occurs.

Where the material is auditioned using two loudspeakers, a mix of sound from each speaker

reaches each ear, the exact ear signals being dependent on the position of the listener and the

geometry of the speakers and listening room.

The Johnston model is explicitly a monophonic, or single channel model. The near universal

practice when using single channel models with stereophonic signals is to employ two identi-
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cal, independent models in parallel, one for

each channel. This approach does not match

human auditory perception. The neural con-

nections present in the auditory system indi-

cate that information from both ears is com-

pared centrally, as discussed in Section 3.2.5.2.

Also, listening tests with human subjects prove

that our hearing ability is better than the inde-

pendent performance of two ears would sug-

gest.

For example, consider the experiment illus-

trated in Figure 4.25. A tonal signal and a

noise masker are presented at one or both ears;

the smiling face indicates the condition in

which the listener can hear the tone. With both

the tone and noise presented to the left ear only, the tone is below threshold, and is inaudible.

If, in addition, the noise is presented to the right ear, the listener can now detect the tone in the

left ear. At first, this seems counter-intuitive: the total noise power has increased and yet the

tone becomes audible. The reason is that the human auditory system compares the signal at

each ear, and whereas the noise is common to both ears, the tone is present at one ear only.

Therefore, the tone is easier to detect.

This is verified by presenting both signals to both ears; now the listener fails to detect the tone,

since there is no advantage gained in comparing the signal at both ears. Finally, the tonal signal

to one ear is inverted, and the listener can hear the tone again. In this experiment, the threshold

of detecting the tone when it is inverted at one ear is 15 dB lower than that of detecting the

tone when it is identical at each ear [Moore, 1997].

Note that if the comparison between ears was perfect, then the threshold for detecting differ-

ences between the signals at each ear would be equivalent to the absolute threshold. This is not

the case. However, the comparison does yield a significant change in masked thresholds that

cannot be predicted by two monophonic models operating independently. This concept will be

addressed in the present model.

Figure 4.25: Binaural Masking Level

Difference
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4.4 Other models

The Johnston model is a single, relatively primitive masking model. Many other models exist,

designed for psychoacoustic research, audio coding, and audio quality assessment. Some of the

issues raised in the previous section are addressed in some of these models. The purpose of

reviewing so many models is to determine which features can be usefully incorporated into the

present model, and which features have not been incorporated into any model to date.

The table on the following three pages summarises the features of the most important auditory

models.

General notes to Table 4.1

All of the models are purely monophonic, apart from PEAQ advanced [Thiede et al, 2000],

which is designed to find the loudest error out of the two channels.

The models are compared as published. In reality, some of the computational models may

contain details and refinements that are not fully described in the short space permitted in an

international publication.

In many of the models, frequency dependent weighting and/or pre-filtering accounts for the

shape of the absolute threshold, whereas internal noise and/or a fixed internal offset accounts

for the level of the absolute threshold. None of the models account for impaired hearing, or a

raised absolute threshold.



Reference [Colomes et al, 1995] [Dau et al, 1996a+b] [Hollier, et al, 1993+1995] [Johnston, 1988a+b]

Purpose
audio codec +

objective perceptual meter
psychoacoustic tool

assessing perceived
audio quality3 audio codec

outer +
middle ear

pre-filtering: ear canal and LPF - - -

frequency
transform

or
basilar mem-

brane response

Fourier transform
2048 samples

grouped into 600 bands equally
spaced on Bark scale according
to [Zwicker and Feldtkeller,
1967]

filter bank

linear basilar mambrane filter
bank model, after [Strube,
1985]

filter bank

one-third-octave filter bank,
energy averaged over 4ms

Fourier transform
2048 samples

grouped into 24 bands
equally spaced on the Bark
scale according to [Zwicker
and Terhardt, 1980]

spectral
masking

convolution

with excitation curve
from linear formula4

arises from

filter bank response
and internal noise

computed directly

via model of
frequency discrimination

convolution

with triangular excitation
curve + offset due to tonal-

ity of signal
amplitude

transform or
hair cell
response

conversion to dB
rectification

5 feedback loops control gain
mapping via equal loudness

curves

conversion to dB SPL
fixed replay level
inclusion of MAF

temporal
masking

-

arises from

5 feedback loops
and internal noise

computed directly

via model of
temporal masking decay

-

detector
comparative

psychometric function

comparative

optimum detection unit

comparative
advanced error surface

analysis

predictive

direct threshold calculation

                                                  

3 This model assumes an audible error (i.e. low quality coded audio) and attempts to judge the subjective impairment due to the error.
4 In this paper, an excitation curve with a level dependent upper slope is tested, but this approach is rejected, as it decreases performance.
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Reference [Thiede et al, 2000] basic [Thiede et al, 2000] advanced [Paillard et al, 1992]

Purpose
“PEAQ” - measuring perceived audio

quality
“PEAQ” - measuring perceived audio

quality
“PERCEVAL” - Perceptual Evaluation of

audio quality
outer +

middle ear
frequency dependent
weighting function

pre-filtering and
frequency dependent weighting

multiplication of energy spectrum

frequency
transform

or
basilar mem-

brane response

Fourier transform
2048 samples

grouped into 0.25 Bark bands according
to [Schroeder et al, 1979]

filter bank
40 filters, equally spaced on Bark scale
according to [Schoeder et al, 1979]; up-
per slope level dependent after [Ter-
hardt, 1979], with temporally smoothed
dependency.

Modulated lapped transform
1024 samples @ 44.1 kHz

sliding average taken for each freq compo-
nent over 3 frames. Transformed to 2500
point Bark scale.

spectral
masking

computed directly
non-linear supposition of local level +
frequency dependent smearing of exci-
tation pattern (plus fixed offset simu-
lating internal noise)

arises from

filter bank response, effective rectifica-
tion, plus frequency dependent offset
simulating internal noise.

computed directly

Bark scale representation filtered along
frequency bands to spread energy. Internal
noise added.

amplitude
transform or

hair cell
response

conversion to dB

adjusted for replay level.

conversion to dB

adjusted for replay level

logarithm

of basilar spectrum

temporal
masking

temporal smearing
frequency dependent IIR filter smears

excitation pattern
Unfiltered value used if larger

temporal smearing
8ms FIR low pass and 4ms first order

IIR low pass filters
smear temporal signal

-

detector

comparative comparative
probability calculated from smoothing
probability in each band over time and

taking maximum

comparative

statistical detection in each band and across
all bands

Table 4.1: Comparison of auditory perceptual models
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Reference [Patterson et al, 1992a,b]
[Rimell and Hawksford, 1996]

[Beerends and Stemerdink, 1992]
[Robert and Eriksson, 1999]5 [Zwicker and

Zwicker, 1984]

Purpose
“Auditory Image Model”

– psychoacoustic tool
perceptual audio

quality assessment
psychoacoustic tool

general perceptual
audio transform6

outer +
middle ear

middle ear filtering
Full room simulation and

HRTF filtering
first order butterworth bandpass

filter 1.4 kHz – 20 kHz
-

frequency
transform

or
basilar mem-

brane response

filter bank

gammatone filterbank
or

transmission line filterbank, spec-
tral sharpening and compression

Fourier transform
40ms, Hanning windowed

convert to power
warp frequency scale to Bark

scale

filter bank
active gamma-tone filters

filter shape varies with complex
feedback from adjacent frequency
channels

frequency to Bark
transform

spectral
masking

may arise from
frequency transform, which may
cause spectral masking if some
internal noise or uncertainty is
added.

convolution

with a unique (to this model)
spreading function

arises from

filter bank and random nature of
inner hair cell firing

computed directly

excitation level
implies it

amplitude
transform or

hair cell
response

compression and 2-D adaptive
thresholding

or
 inner hair cell simulation

specific compressed loudness

calculated via an equation which
simulates equal loudness curves

inner hair cell simulation

includes half wave rectification,
low pass filtering, and adaptation.

specific loudness
transform

temporal
masking

may arise from
strobed temporal integration or

correlogram which may give rise
to some masking

temporal smearing

Frequency dependent temporal
smearing between frames

arises from

adaptation and random nature of
inner hair cell firing

temporal smearing

specific loudness
smoothed over time

detector -

comparative
perceived noise = log (difference
between internal representations
of inputs, averaged over time)

- -

                                                  

5 This model post-dates the monophonic section of the model developed in the present thesis [Robinson and Hawksford, 1999].
6 This paper does not present a model per se, however, it contains principles for transforming audio into a perceptually relevant internal representation.
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4.4.1 Comparison of models

Whilst the models vary in complexity and intended purpose, Table 4.1 shows that many have

common features. Most pre-filter the audio signal; all use some kind of time to frequency

transform, with a near logarithmic internal frequency scale; all convert the signal amplitude

into some kind of logarithmic representation. These processes correspond to stages within the

auditory system, discussed in the previous chapter.

Some of the models calculate spectral masking explicitly, and most simulate temporal masking

with a smearing, spreading, or low pass function. However, some of the models simulate nei-

ther spectral nor temporal masking directly. Rather, they simulate the processes within the

HAS which give rise to masking, and let the masking arise as a consequence (see Section 4.2).

The number of frequency bands or bins varies dramatically, from nine [Hollier, et al,

1993+1995] to 600 [Colomes et al, 1995]. The models employing hundreds of bands do not

appear to exhibit better performance than those using tens of bands7. Both PEAQ versions

[Thiede et al, 2000] predict human perception admirably. The filter bank version of PEAQ

yields the more accurate prediction of human perception, though the filter bank version uses

only 40 bands, while the inferior FFT version uses 100. However, the amount of information

generated by 40 filters is much greater than that generated by a 1024 sample FFT summed into

100 frequency bins. In particular, the filter bank generates continuous time-domain signals,

whereas the FFT generates discrete snapshots. Post-processing may recover further frequency

information from the output of a filter bank, whereas FFT components, once summed into

coarser bands, cannot be decoded to yield further time or frequency domain information. For

this reason, if a filter bank model is chosen, fewer frequency bands will be employed than if an

FFT model is developed.

All the models in Table 4.1 except Johnston use a comparative measure to calculate the audible

difference between two signals. This approach will be used in the present model, since the pre-

dictive measure is unreliable, as demonstrated in Section 4.3.2.

                                                  

7 This conclusion carries the following caveat; all authors conclude their papers with positive

reports of their model’s performance, but few include a critical comparison with other models.
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[Rimell and Hawksford, 1996] (from [Beerends and Stemerdink, 1992]) and [Thiede et al,

2000] (basic) represent the most advanced attempts to simulate the effects of the human audi-

tory system, without simulating any components of the auditory system directly. This is one

possible approach for the present work. However, [Thiede et al, 2000] (advanced) move away

from this approach, and closer to the actual workings of the auditory system by replacing the

FFT by a filter bank. This development reduces computational efficiency, but improves per-

formance. There is extensive data in [Thiede et al, 2000] demonstrating that the advanced

model matches human perception more closely than the basic model. For this reason, the pres-

ent model will be designed to closely match the processes found within the human auditory

system.

The use of a filter bank removes all the problems associated with windowing, which were am-

ply demonstrated throughout Sections 4.3.2 and 4.3.3. However, the level-dependent non-

linearity of spectral masking is easier to simulate in an FFT based model, where the spectral

masking is calculated directly. To incorporate this non-linearity into a filter bank based model,

the filter bank itself must be non linear, as in [Thiede et al, 2000].

Most of the models in Table 4.1 include a filter that smears the signal envelope in order to

simulate temporal masking. Whilst this yields a first-order approximation, the aim is to predict

temporal masking more accurately in the present model.

Finally, none of the models in Table 4.1 address spatial masking or binaural hearing. This is a

significant area in which the present model aims to improve upon the performance of existing

models.

4.5 Conclusion

In this chapter, the concept of auditory modelling has been introduced. A simple model has

been tested, and shown to give satisfactory performance in simple psychoacoustic tests. The

model was unable to reliably assess the audio quality of codecs containing a more advanced

auditory model. Current state-of-the-art models have been compared, and suggestions have

been made for areas where the present work may supersede the performance of existing mod-

els. These include spatial masking, temporal masking, and non-linearity.
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5 

Monophonic Auditory Model

5.1 Overview

In this chapter, an auditory perceptual model for assessing the perceived quality of coded audio

signals is described. This model simulates the functionality of the physiology found within the

human ear. The passage and transformation of sounds from the free field to their neural repre-

sentation is simulated. The neural signal is processed by a novel detection network. Finally, the

model is calibrated using known psychoacoustic data.

5.2 Introduction

A perceptual model aims to simulate human perception. The task of the perceptual model

within any audio assessment algorithm is to simulate the human auditory system. There are

many approaches to this task, as discussed in detail in the previous chapter. They range from

modelling the coarse effects of the auditory system, to modelling the actual processing that

occurs at a neural level. The former gives a poor approximation of human perception, while the

latter is computationally burdensome, and yields such vast quantities of data that any further

processing (e.g. the prediction of perceived sound quality) is very complex.

If the processing within the model is similar to that present within the human auditory system,

then the model may accurately predict the perception of a human listener. For this reason, the

present model will simulate the processes present within the human auditory system, but on a

macro, rather than micro-scale. The effects of the auditory system (e.g. spectral and temporal

masking) which are so important in any measurement algorithm, arise as a consequence of

these processes.
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5.3 Structure of the model

The model presented here is based upon the processing present within the human auditory

system, as described in Chapter 3. The structure of the auditory model is shown in Figure 5.1.

Each individual component is described in the following sections.

5.3.1 Signal Preparation and Implementation

The model is programmed using the MATLAB environment, and all code is included on the

accompanying CD-ROM. All input signals are fed to the model via Microsoft .wav format

files, and where appropriate, intermediate results are stored in 32-bit accurate .wav files. The

MATLAB functions for reading and writing .wav files have been modified by the author to

allow the use of 32-bit .wav files, and to enable truly random read/write access to the files.

Any D.C. offset is removed from the input signal before further processing. Where two signals

are presented for comparison, the signals are time aligned to the nearest sample. This process is

carried out either by manipulating the two waveforms within a sample-accurate audio editor

[Syntrillium, 2000], or automatically by cross correlation, using the MATLAB routine waveta,

which is included on the accompanying CD-ROM.

Figure 5.1: Overall structure of the monophonic model
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The relationship between the digital representation of the waveform and the real world sound

pressure is controlled by the variable ms (maximum SPL). The ear’s response to a signal pre-

sented at 40 dB is very different to the same signal presented at 90 dB, so this information is

required by the model. ms is defined as the sound pressure created by a digital full scale sine

wave at the centre of the listener’s head, given in units of dB SPL. The default value is 90 dB.

This is chosen because it is a typical listening level for popular music, and the theoretical

noise-floor of CD quality audio is inaudible at this level.

The value of ms is effectively a measurement of the monitor gain of the audio system through

which the signal is (hypothetically) being auditioned. In simple terms, it communicates the

position of the listener’s volume control to the model. Surprisingly, there is no accepted stan-

dard within the audio industry which relates digital signal amplitude to real world SPL.

However, the film industry does have such a standard [SMPTE RP 200, 1999]. Table 5.1 lists

approximate values of ms, and the appropriate gain adjustments relative to the SMPTE stan-

dard, for various styles of music. The different values are not due to musical style per se, but

due to the manner in which different musical genres are typically mastered at different levels

on CD.

It is very important to set ms correctly, especially when testing classical music. If the default

value of 90 dB is employed, the lowest 10dB of dynamic range will fall below absolute thresh-

old. All signals below absolute threshold are ignored by the model, so any “audible” problems

in this range will be missed. However, a real human listener would increase the volume to

Source Material ms gain relative to SMPTE RP 200

Default setting 90 dB -13 dB

Chart CD single 89 dB -14 dB

Pop CD album 91 dB -12 dB

Classical CD 99 dB -4 dB

Audiophile CD 101 dB -2 dB

SMPTE RP 200 103 dB 0 dB

Table 5.1: Suggested values of ms for different musical genres, and corresponding gain

adjustments relative to SMPTE RP 200 reference
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listen to the quieter classical CD, thus raising any problems within the lowest 10dB up into the

audible range. Hence ms must be increased correspondingly, or the model will give misleading

results.

In yet another scenario, ms may be lowered to simulate quiet (late night) listening, where lower

quality audio may be acceptable. Thus, the specification and inclusion of ms within the model

yields new applications and flexibility.

5.3.2 Pre-filtering

The filtering of the pinna and ear canal is simulated by an FIR filter, derived from measure-

ments carried out via a KEMAR dummy head. An arbitrary angle of incidence is chosen, in

this case 30°, yielding the response shown in Figure 5.2. The KEMAR measurements are used

because they are readily available for this research. Measurements from human subjects could

Figure 5.2: HRTF 30°

amplitude, phase, and impulse response;  fs = 44.1 kHz
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be used as a more accurate and realistic alternative (e.g. [Hammershøi et al, 1992] and [Møller

et al, 1995b]).

5.3.3 Middle Ear filtering

A filter based upon inversion of the Equal Loudness curves [Robinson and Dadson, 1956]

provides a good approximation to the response of the outer and middle ear (see [Moore et al,

1997] for further discussion). The equal loudness curves were discussed in Chapter 3, and a

plot of these curves is shown in Figure 3.5.

An IIR filter was designed to match the target response using the MATLAB yulewalk func-

tion. The yulewalk function only considers the amplitude response when optimising the

filter, hence the phase response is erratic. A stable and computationally efficient filter was

produced by cascading a 10-point yulewalk-designed IIR filter with a 3-point 2nd order butter-

worth high-pass IIR filter. The latter was employed to produce the desired low frequency

attenuation, which would have required an excessive number of taps if implemented within the

Figure 5.3: Equal Loudness filter to simulate outer- and middle-ear frequency response
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first filter. This dual-filter method has the advantage that, should the low frequency response

be in error (due to internal noise, as discussed in Chapter 3), then it can easily be altered with-

out re-designing the entire filter. The response of the combined filter is shown in Figure 5.3.

This filter simulates the response of the ear canal and middle ear. However, the HRTF filter

also includes the ear canal response, and comparison of Figure 5.2 and Figure 5.3 confirms that

both filters contain a common band-pass component. If the pinna response is not required (for

example, when simulating headphone listening) then the HRTF filter should be dispensed with.

If the pinna response is required, then a diffuse normalised HRTF may be used1, since diffuse

normalisation removes the ear canal response. (See [Robinson and Greenfield, 1996] for fur-

ther details.) Both raw and diffuse normalised HRTFs are included on the accompanying CD-

ROM.

5.3.4 Basilar membrane filtering

A bank of amplitude dependent filters simulates the response of the BM. Each filter is an FIR

implementation of the gammachirp, described in [Irino and Patterson, 1997], and simulates the

response of the BM at a given point.

The formula for the time domain (impulse) response of the gammachirp filter is

))ln(2cos())ERB(2exp()( 1 φππ ++−= − tctftfbattg rr
n

c (5-1)

                                                  

1 The MAF measurements were carried out using a single loudspeaker in front of the listener. For this reason,

a frontal HRTF response should be embedded within these measurements. Whilst there are some traces of the

0° HRTF visible in the MAF curve, it is not an accurate representation of the response. Either the MAF data

has been smoothed, or the listener subconsciously corrected for the HRTF. The latter is probable. In everyday

life, the varying frequency response of sounds from different directions is hidden from us by the auditory

system. The direction dependent frequency response (HRTF) is decoded, such that we perceive the correct

direction, and a flat frequency response. For this reason, it is assumed that the MAF does not contain an

HRTF response, although some trace of the HRTF may be present. Hence, a diffuse normalised HRTF is

employed in the simulation of free-field listening. If a future MAF measurement clearly contains an accurate

frontal HRTF response, then it may be use in isolation, or with a front-normalised 30° HRTF. The reader is

referred to [Robinson and Greenfield, 1996] for an extensive discussion of HRTF normalisation.
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where ERB is the equivalent rectangular bandwidth of the filter, given by

rr ff 108.07.24)ERB( += (5-2)

In [Irino and Patterson, 1997], data from four separate studies on the shape of the human

auditory filter is used to calculate values for a, b, c and n. The chosen values for b and n are

1.14 and 4 respectively. The term a determines the overall amplitude of the filter. In the model,

a is set individually for each filter, such that the centre frequency is not attenuated (though an

implementation issue of this approach will be discussed in Section 5.3.4.2). The term c ln(t)

causes the amplitude dependency, where c is proportional to the amplitude of the signal in each

band. This will be discussed in Section 5.3.4.3. A single gammachirp filter is shown in Figure

5.4.

Figure 5.4: Gammachirp filter

 amplitude, phase, and impulse response fs = 44.1 kHz
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5.3.4.1 Spacing of the filters

The filters are spaced linearly on the Bark frequency scale, or critical-band rate scale. This

scale correlates with the spacing of resonant frequencies along the BM. The critical band

number z (in Bark) is related to the linear frequency f, thus

53.0)]1960/(81.26[ −+= ffz (5-3)

with the correction that for calculated z>20.1, the actual Bark, z’ is given by

)1.20(22.0' −+= zzz . (5-4)

This definition of the Bark scale is taken from [Traunmüller, 1990]. Comparison with meas-

ured data [Zwicker, 1961] shows that this formula is accurate to within ±0.1 Bark. This is more

accurate than any other available formula (c.f. the auditory models reviewed in the previous

chapter). Formulae (5-3) and (5-4) have two further advantages. Firstly, they are computation-

ally simple, and secondly, they are easily inverted to give a transformation from Bark to linear

frequency, ensuring that a conversion from frequency > Bark > frequency will yield the origi-

nal frequency.

It is debatable as to what spacing (and hence number) of filters are needed to match the fre-

quency resolution of the human ear. It has been suggested that humans can differentiate about

620 frequencies, equally spaced in the bark domain [Colomes et al, 1995] from [Zwicker and

Feldtkeller, 1967]. However, it does not follow that there are 620 differentiable points along

the BM. At lower frequencies, the firing rate of the inner hair cells will represent the frequency

(or pitch, since this is what humans perceive), irrespective of the resolution of the BM. In

addition, a pure tone of any audible frequency will excite a region of the BM wider than one

Bark. Thus, if the spacing of the filters is equal to one Bark, it will be possible to estimate the

frequency of a single tone by comparing the energy levels in adjacent filter-bands.
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Hence, it is unnecessary to simulate 620 points

on the BM via a bank of 620 gammachirp

filters in order to match human perception.

Instead, the number of filters is chosen such

that all frequencies are transduced without

significant inter-filter gaps.

Choosing a spacing of ½ Bark causes all

frequencies between 100 Hz – 16 kHz to be

within 3 dB of the resonant peak of a filter

(See Figure 5.5 (b)). Decreasing the filter

spacing to ¼ bark causes all audible frequen-

cies to be within 1 dB of the resonant peak of a

filter (See Figure 5.5 (c)). At this spacing 96

filters are needed to cover the full audible

range.

5.3.4.2 Implementation issues

During the testing and calibration of the

model, only a single gammachirp filter was used. For each task, this filter was centred on the

particular frequency of interest.

(a) – 1 Bark spacing (24 filters)

(b) – ½ Bark spacing (48 filters)

(c) – ¼ Bark spacing (96 filters)

Figure 5.5: Spacing of gammachirp filters

   

(a) – ideal gammachirp filter bank (b) – sampled filterbank, fs = 44.1 kHz

 Figure 5.6: Effect of Nyquist sampling on gammachirp filter bank
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Two problems arise when a gammachirp filter bank is generated in a digitally sampled domain.

Firstly, filters acting at or near the Nyquist frequency (half the sampling rate) can behave

unexpectedly. Figure 5.6 compares the response of an ideal filter bank with that of a filter bank

sampled at 44.1 kHz. The response of all the filters increases slightly near the Nyquist limit

(right hand side of the graph), but this deviation is trivial. More significantly, the lower stop-

band of the highest frequency filter is increased by 7 dB compared to the ideal filter. When

auditioning a typical coded audio signal (which is down at the noise floor by 20 kHz), this will

cause the level in this band (due to leakage from lower frequency components) to be twice as

loud as the adjacent band. Examining the impulse response of the filters reveals that the high-

est frequency filter lies closest to t = 0, and has a relatively high amplitude first sample.

Windowing the start of the filter does not help, because any reasonable length window function

will obliterate the majority of the non-zero impulse response. Using a sample rate of 96 kHz

solves the problem, as shown in Figure 5.6 (a). This is one possible solution to the problem,

though it is more convenient to operate the model at the same sample-rate as the input signal

(usually 44.1 kHz).

However, a filter centred over 20 kHz is irrelevant for most audio signals and listeners, so may

be ignored unless specifically required (e.g. simulating response of young listeners2 or a high

sample-rate system). In addition, the hearing of older listeners can be crudely simulated by

discarding several of the highest frequency filters, as appropriate.

                                                  

2 Many researchers have argued that there are no auditory filters centred above 15 kHz, and that the ability of

some listeners to hear higher frequency sounds can be attributed to the output of the 15 kHz centred filter

(e.g. [Moore et al, 1997] and [Zhou, 1995]). Whilst this may be true for the majority of young listeners, it is

difficult to believe that the exceptional individuals who can hear up to 25 kHz are detecting such frequencies

through a 15 kHz centred filter, since such a filter attenuates 25 kHz by 90 dB! A 20 kHz centred filter would

attenuate 25 kHz by 40dB, so the presence of this filter in some gifted individuals is a more plausible expla-

nation.
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The second problem in the sampled implementation of the gammachirp filter bank arises from

the normalisation of the filters to 0 dB at their centre frequency. This is carried out by FFTing

each impulse response, and normalising to the maximum value. However, the FFT yields a

discrete frequency domain representation. As with any discrete representation, the peak value

of the FFT does not necessarily coincide with the true peak value of the filter response, which

may lie between discrete points. The effect is most pronounced at low frequencies, where

fewer frequency domain values define each filter. This results in errors in the normalised peak

values, as shown in Figure 5.7. These errors are small, and could be ignored. However, they

may be avoided by padding the impulse response with zeros before the FFT, which has the

effect of oversampling the response in the frequency domain, and hence causes a value closer

to the true peak value to be present.

5.3.4.3 Amplitude dependence

The frequency response of each point on the basilar membrane is amplitude dependent. In the

model, this is simulated by adjusting the shape of each gammachirp filter continuously in

response to the input stimulus.

Figure 5.7: Ripple in filterbank due to finite frequency resolution of FFT
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5.3.4.3.1 Physiological mechanism

In [Moore and Glasberg, 1987], it is shown that the response of each filter varies according to

the level of the input to the filter, rather than its output. This is demonstrated in Figure 5.8

[Moore, 1995], where the left-hand panels show excitation patterns calculated on the assump-

tion that the level at the output of each filter determines its shape, and the right-hand panels

show excitations patterns calculated on the assumption that the level at the input of each filter

determine its shape. Only the right-hand panels show the well-known upward spread of excita-

tion in response to the louder signals.

This would be acceptable proof of a real physical mechanism, were it not for the fact that the

assumption underlying the right-hand panels is physiologically impossible! To demonstrate

this, consider a pure tone stimulus. The assumption suggests that a filter at one point on the

basilar membrane changes its response as the level of the input to that filter increases. This is

required behaviour, even if the input signal is rejected by the filter in question. Recall from

Figure 5.8: Dependence of excitation upon stimulus level

upper: linear scale; lower: logarithmic scale.

 left: filter shape varied according to output; right: filter shape varied according to input.
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Chapter 3 that the filter response is partially due to the mechanical properties of the BM, and

that the detection of the movement of the BM is entirely due to the hair cells upon on it. Thus,

it is impossible for the filter at any given point to “see” its input if it is rejected by the filter,

since a rejected frequency component will cause no oscillation of the BM at that point. The

auditory system has no knowledge of the signal before the filter, since the detection mecha-

nism lies after the filter3.

This suggests that the auditory system cannot change the shape of each filter in response to the

input level. Unfortunately, [Moore and Glasberg, 1987] show that the output level of a given

filter cannot explain its change in shape either.

The answer to this apparent contradiction is intuitively simple. The feedback mechanism

within the auditory system responsible for changing the filter shape with stimulus level is (in

all probability) driven from the outputs of all the filters. It seems likely that the mechanism

determines the maximum output level in this manner, and then adjusts all the filters accord-

ingly. This is physiologically sensible; the maximum displacement of the BM is detected, and

the movement of the BM as a whole is damped in response. This explanation gives the re-

quired (known) excitation patterns, without suggesting that the auditory system must have

some pre-filter knowledge of the input signal – knowledge which cannot be explained from

known physiology.

5.3.4.3.2 Implementation

The output of each filter corresponds to the instantaneous displacement of the basilar mem-

brane at that point. Hence, the largest output from the bank of filters is equivalent to the

maximum instantaneous displacement of the basilar membrane. However, changing the filter

shape in response to this instantaneous value would cause the filter shape to oscillate with the

cycles of a sine wave input signal. This behaviour is undesirable, and causes the model to be

unstable. For this reason, it is necessary to apply a peak detect and hold algorithm to the output

                                                  

3 It is likely that the active feedback mechanism within the cochlea (which causes the excitation pattern to be

amplitude dependent) is driven by information from the stereocilia, rather than the inner hair cells them-

selves. However, the stereocilia are reacting to BM movement, so they are still “post-filter”. Thus the

argument remains valid whichever detector is employed.
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of each filter before determining the maximum displacement value. Thus, the model tracks the

envelope of each band, rather than the instantaneous amplitude.

The approximate frequency at the output of each filter is known (due to the gammachirp filter

having an approximately band-pass response), so the waveform peaks in each band are sepa-

rated by a known distance. Thus, the envelope can be tracked by “riding the peaks” of the

waveform. This is implemented as follows.

hw is defined as half the wavelength (in samples), given by

fc

fs
hw

2
= (5-5)

where fs is the sampling frequency, and fc is the centre frequency of the gammachirp filter.

Then the time-domain envelope in each band is given by

)]]:,(max[abs[),(_ tt-hwbandfb_outputtbandpksfb = (5-6)

where fb_output is the time-domain output of the filter, and band is an index to each filter

(band). A value of one half wavelength is used because the rectified (absolute) waveform

contains two peaks per wavelength (cycle), and the algorithm only needs to look back to the

previous peak to ride the envelope correctly. This gives a rapid response, whilst maintaining

model stability.

Finally, the maximum envelope across all bands is calculated, thus

)]],1(max[)(_ t:nbandsfb_pkstpks_mxfb = (5-7)

This gives the value of the maximum displacement of the basilar membrane, which is used to

change the shape of the gammachirp filters.

The value of c in equation (5-1) is calculated from the peak value, fb_pks_mx(t), thus,

]))(__(log20[*059.029.3)( 10 msinatmxpksfbtc ++−= (5-8)
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The numerical values in this equation were

obtained by fitting the filter shapes generated

by equation (5-1), to those measured using

human subjects (shown in Figure 5.2) for the

range of c and fb_pks_mx(t) covered by the

human performance data.  ina is included to

prevent the calculation of log(0) during a silent

input signal. The value of ina is just below the

minimum audible threshold (i.e. inaudible),

and has a negligible effect on supra-absolute-

threshold calculations. ms refers to the play-

back level, as discussed in Section 5.3.1.

5.3.5 Hair cell transduction

At each point along the basilar membrane, its

movement is transduced by a number of hair cells, as discussed in Chapter 3. In the model, this

will be simulated by appropriate processing of the output of each gammachirp filter. Subse-

quent processing will take place in parallel, in as many bands as there are gammachirp filters

(see Section 5.3.4.1).

5.3.5.1 Meddis Hair Cell model

Each individual hair cell yields little information about the incoming sound wave – it is only

by examining the firing rates of hundreds of hair cells that a complete picture may be con-

structed. The hair cell model detailed in [Meddis, 1986], [Meddis, 1988], and [Meddis et al,

1990] simulates the random firing of individual cells, and the probability of each cell firing. A

MATLAB implementation of this model is included on the accompanying CD-ROM.

A diagram of the model is shown in Figure 5.10. The model tracks transmitters, which are

released from the hair cell into the Post Synaptic Afferent Fibre (which leads on to the auditory

nerve). The probability of a transmitter being released from the hair cell is proportional to the

number of transmitters available within the hair cell, and its instantaneous displacement. In the

gap (Synaptic Cleft) between the cell and the fibre, some transmitters will be lost, and others

will return to the hair cell where they will be reprocessed and made available for subsequent

Figure 5.9: Amplitude dependent response

of basilar membrane [Moore, 1995]
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re-release. The number of transmitters within the Synaptic Cleft determines the firing prob-

ability of the fibre4.

This model accounts for the hair cell response

discussed in Chapter 3, as illustrated in Figure

5.11. At the onset of a sound, there are many

transmitters available within the hair cell for

release. These transmitters immediately flood

the Synaptic Cleft, giving a large peak in the

probability of firing. The number of transmit-

ters in the Cleft decreases as the sound

persists, and eventually decays to a steady

state, where the number of transmitters re-

leased into the Cleft is balanced by the number

lost or returned to the hair cell. With the cor-

rect parameters, the model provides a good

match to measured mammalian individual hair

cell performance [Meddis et al, 1990].

A single hair cell at each point along the BM

could be simulated by processing the output of

each Gammachirp filter with the Meddis hair

cell model. Unfortunately, the matter is com-

plicated by two issues. Firstly, it is

hypothesised that the range of motion of the

BM may be compressed by the action of the

outer hair cells. As discussed in Chapter 3, the

exact compression mechanism is currently

unknown. However, it is certain that a single

hair cell (and hence the Meddis Hair cell

                                                  

4 This apparently complex system is much simpler than previous models. For example, [Smith and Brach-

man, 1982] split each hair cell into 512 separate sites, each with its own transmitter factory. However, the

simpler Meddis model accurately simulates a larger number of measured phenomena than previous models.

Figure 5.10: Schematic representation of

the Meddis Hair Cell model

Figure 5.11: Response of Meddis Hair Cell

Model
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model) will be driven into saturation by the dynamic range of everyday sounds, unless the

movement of the BM is compressed.

Secondly, there are at least three categories of inner hair cells, each operating over a different

dynamic range, and each present at every point along the BM. An accurate functional simula-

tion would require hundreds of simulated hair cells at the output of each gammachirp filter.

The information from all these hair cells must then be re-combined into a single detection

probability. This is a computationally burdensome task, and a less complex model of hair cell

action is sought. Ideally, the model should include the compression of the BM, and yield the

same hair cell firing probabilities for a given input as the Meddis model, but without the com-

plex internal processing.

5.3.5.2 Adaptation

[Dau et al, 1996a] suggests a

model which yields similar

results to that of [Meddis,

1986] via a specially designed

filter mechanism, taken from

[Püschel, 1988]. The output of

each gammachirp filter is half

wave rectified, then low pass

filtered at 1 kHz (see Figure

5.12). This partially simulates the response of the inner hair cells, but without taking account

of their increased sensitivity to the onset of sounds. This change in sensitivity can be viewed as

a type of adaptation. The next stage is to simulate this adaptation by a cascade of 5 feedback

loops, each with a different time constant. For a given stimulus, this circuit simulates the re-

sponse of the inner hair cells remarkably well. The output is the probability of firing, rather

than the neural firing signal itself. However, the latter can be generated by driving a random

process from the output of the circuit, if so desired. In the present model, the firing probability

is used directly.

Whereas an individual inner hair cell can exhibit absolute saturation, this is not simulated by

the adaptation model. An individual hair cell is said to have reached saturation if an increase in

stimulus loudness fails to cause an increase in the firing rate of the cell. However, within

Figure 5.12: Circuit to simulate Hair Cell response
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normal listening conditions, the movement of the BM is restricted by the action of the outer

hair cells such that the inner hair cells are not driven into saturation. It is only in dead cochlea,

where the active feedback mechanism is absent, that the saturation of the inner hair cells is

relevant5. Hence, by simulating the inner hair cell response without saturation, this model is

simulating normal hearing, and the compression of the BM is implicitly taken into account.

It has been shown that the overall measured adaptation of the human auditory system is well

matched by the adaptation model shown in Figure 5.12 (from [Dau et al, 1996a]). The time

constants used are 5, 50, 129, 253, and 500 ms.

5.3.5.3 Internal Noise

The random firing of the inner hair cells, combined with the blood flow within the ear, gives

rise to an internal noise that limits our absolute hearing threshold. The model as it stands con-

tains no such internal noise. To account for this, an absolute threshold is fixed into the model

after the rectification. Signals with a level below the threshold of hearing are replaced by the

threshold value. This internal value is calculated from the MAF figures in [Robinson and

Dadson, 1956], processed through the stages of the model.

[Dau et al, 1996a] state that a fixed internal threshold does not accurately model the HAS

response to signals near the absolute threshold of hearing. However, it will be shown that the

novel detection mechanism used in the current model yields accurate near-threshold behaviour.

Two types of noise are simulated by fixed thresholds within the model; the internal noise

discussed here, and the perceptual noise discussed in Section 5.4.2. For this reason, the internal

absolute threshold discussed here is 3 dB lower than the figures of [Robinson and Dadson,

1956] would indicate, since the perceptual noise will raise the threshold by 3 dB.

The advantage of using a fixed threshold instead of internal noise is that the model will always

yield the same result with a given input stimulus. If random noise was introduced, many repe-

titions of the same measurement would be required before a human performance estimate

                                                  

5 The inner hair cells may also be driven into absolute saturation in the presence of very loud stimuli, or in

elderly subjects where the active feedback mechanism has begun to break down. In the former, hearing loss

is the likely result, where as in the latter it has already occurred. This is not accounted for by the present

model.
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could be calculated. The aim of the model is not to simulate individual responses, which must

then be subjected to time consuming repetition and averaging. Rather, the model should simu-

late averaged human behaviour.

The internal noise does not have a uniform spectrum. Rather, the power of the noise increases

at low frequencies (see [Soderquist and Lindsey, 1972]). There are two possible methods of

simulating this feature using the current fixed internal threshold approach.

1. The internal threshold values in the lower critical bands may be increased, thus raising the

thresholds in line with the internal noise.

2. The incoming audio signal may be filtered, thus simulating the reduced sensitivity to lower

frequencies which arises from the internal noise.

The first method takes no account of the upwards spread of masking due to the internal noise,

whilst the second method ignores the decreasing effect of internal noise with increasing

stimulus level. The second method is implemented within the current model, but the first

method can be implemented by setting appropriate fixed internal thresholds, and removing the

butterworth high-pass filter described in 5.3.3. The second method was chosen because it can

be readily implemented in combination with the middle ear response, simply by creating a

filter which is the inverse of the MAF response. In addition, near threshold low frequency

artefacts are relatively uncommon in coded audio, so accuracy in this range is less important.

5.3.5.4 Outer Hair Cells

The outer hair cells are believed to respond to signals originating from higher processing

centres. Together with the inner hair cells, they are thought to form an active feedback loop,

often referred to as the Cochlea Amplifier, as discussed in Chapter 3. This hypothesised

mechanism is thought to be responsible for three measurable effects: amplitude dependent

spectral masking; compression of dynamic range and in-ear generation of sounds.

The amplitude dependence of spectral masking within the HAS arises directly from the ampli-

tude dependent nature of the excitation pattern upon the basilar membrane. This has been

simulated directly by the Amplitude dependent gammachirp filter bank, as discussed in 5.3.4.3.

The mechanism employed is reminiscent of the proposed Cochlea Amplifier [Yates, 1995],

indicating that the model may match the physiology.
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The compression of dynamic range is simulated by the adaptation circuit discussed in Section

5.3.5.2.

The in-ear generation of sounds is not directly accounted for in the present model. This topic is

extensively discussed in Appendix A, where audible in-ear generated sounds are shown to be

unimportant when assessing coded audio. It is assumed that inaudible in-ear generated sounds,

which can be detected using very sensitive measuring equipment, are irrelevant.

5.4 Perceiving a difference

Two performance metrics are important when assessing high quality coded audio. Firstly,

given the original audio signal, and the coded version, is there any audible difference between

the two? This question can be answered by calculating the probability of perceiving a differ-

ence between the two signals. The result gives an indication of the transparency of the coding

process. Secondly, if there is an audible difference between the two signals, how annoying is

this difference? If a human listener were asked to choose between two coded audio signals,

both audibly inferior to the original, which would they prefer? This is a more complex ques-

tion, which human listeners do not answer consistently. There have been some successful

attempts to answer this question (e.g. [Hollier et al, 1995]), and these methods can be em-

ployed with the present model. This second question is addressed in Chapter 8. The first

question is the subject of this section.

So far, we have simulated the passage of sound

through the ear canal and cochlea – see Figure

3.1 (a-c). The output of the auditory model is a

signal analogous to that transmitted along the

auditory nerve. If two signals are processed

independently by the auditory model, the

difference between the two resulting outputs

will be related to the perceived difference

between the two signals. This concept is illustrated in Figure 5.13. The next task is to deter-

mine the processing that is necessary to yield an accurate indication of perceived difference.

The outputs of the model are n time varying signals, where n is the number of gammachirp

filters, as discussed in Section 5.3.4.1. Henceforth, n will be referred to as the number of

Figure 5.13: General method for

calculating the perceived difference

between two audio signals
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bands. Calculating the perceived difference will involve comparing corresponding signals in

each band, as shown in Figure 5.13.

This process will be calibrated using known human performance data, in the form of masked

thresholds. This same criterion was used to test the performance of the Johnston model in

Chapter 4. Masked thresholds are relevant to the assessment of coded audio. If the model can

correctly predict the level at which one sound becomes audible in the presence of another, then

it should also correctly predict the audibility of coding noise in the presence of the original

signal. The similarity between determining the just noticeable difference, and determining the

masked threshold is discussed in [Zwicker and Fastl, 1990], where the two situations are

shown to yield similar internal differences. The possible problems of using masked threshold

data in this manner are discussed in Appendix B.

Full details of the psychoacoustic experiments referred to throughout this section can be found

in Appendix C. In a previous version of this model ([Robinson and Hawksford, 1999] and

Appendix E), a smaller set of psychoacoustic experiments were used to calibrate the model.

The absence of temporal pre-masking data resulted in a model that exhibited no pre-masking.

This caused the model to be more sensitive to the onset of sounds than human listeners. For

this reason, a new difference detection circuit is outlined below, which has been calibrated

using all the psychoacoustic experiments listed in Appendix C.

5.4.1 Possible strategies

5.4.1.1 Calculating the perceived difference by simple subtraction

If the difference calculation in Figure 5.13 is a simple subtraction, then inaudible signal differ-

ences lead to large calculated perceived differences (CPDs). Further, if several “just audible”

signal differences are processed in this manner, the peak calculated perceived difference for

each signal-pair is inconsistent. For example, the at-threshold temporal post-masking 0 ms

signal-pair gives a peak CPD of 0.2915, whereas the at-threshold tone masking noise signal-

pair gives a peak CPD of 0.0288.

It is apparent that the peak difference between the internal representations is a poor predictor of

perceived difference. A possible intuitive solution to this problem is to integrate the difference

in some manner, but no time constant can reconcile the differences between the different psy-

choacoustic experiments.
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Comparing the two quoted CPD values, the reader may doubt that any single detection crite-

rion can be appropriate in all circumstances. This may be partially true, but a single detection

criterion has been successfully used in several models, and one such approach will now be

considered.

5.4.1.2 Calculating the perceived difference using signal detection theory

The model in [Dau et al, 1996a] correctly predicts the temporal pre- and post-masking thresh-

olds, and the noise masking tone threshold, in addition to other psychoacoustic phenomena.

This model, in common with many others, assumes that some internal “perceptual noise” must

be present, which is responsible for masking differences that would otherwise be audible. To

detect the difference signal within this noise, an optimum detector is used. Signal detection

theory states that there is no single optimum detector; rather, the choice of optimum detector

depends upon the task [Green and Swets, 1966]. For example, if the target is a 1 kHz tone, and

the masker is gaussian noise, then the optimum detector would average the signal every 1 ms,

such that the target signal would reinforce itself, if present. A suitable decision criterion, based

upon the output of the averaging process, would decide if the target was present, or absent. The

optimum criterion would depend on the amplitudes of the signal and the noise. The mechanism

that yields the greatest percentage of correct decisions is defined as the optimum detector.

In order to specify the optimum detector for a given task, the nature of the task must be known.

The more complete the a-priori knowledge of the target and masker, the more successful the

optimum detector will be. This is because the ability to detect a signal not only depends on the

nature of the masking noise, but also on how completely the signal is defined within the de-

tector. This is a fundamental limit of the theory of optimal detection.

Within Dau’s model, optimal detection works well. The noise is added by the model itself, so

the statistics of the noise are known exactly. The model is given access to a supra-threshold

target + masker signal, and to the masker in isolation. Comparison of these two signals yields

an internal representation of the target. Where a time-domain representation of the target is

known, the optimum detector is convolution. Thus, each stimulus is convolved with the stored

target to determine if the target is present within the stimulus. With the correct amount of

internal noise, the stimulus ceases to be detected at the measured masking threshold, thus

matching human performance. Hence, an optimal detector is used to simulate a sub-optimal

detector (the HAS) by the addition of noise.



MONOPHONIC AUDITORY MODEL

116

In this configuration, the model simulates a human listener exactly – that is, repeated threshold

determinations are required before calculating the average. However, the internal perceptual

noise can be replaced by a fixed internal threshold. This changes the model’s performance

from stochastic (Figure 5.14(a)) to deterministic (Figure 5.14(b)), whilst maintaining one

correct threshold (70.07% in Figure 5.14(a)). The optimal detection process is still applicable,

because the target is known.

Unfortunately, this optimal detector is not suitable for audio quality assessment. In this appli-

cation, the target is an unknown audio coding artefact, whereas the optimal detector can only

search for a known target. Human listeners often undergo training, where they are sensitised to

coding artefacts by listening to some highly audible examples. It may be possible to carry out

the same process with an optimal detector, thus building an internal library of possible targets

(artefacts). However, there is no guarantee that the same artefacts will be present in all subse-

quently auditioned material. Most importantly, new audio codecs often produce new and

unfamiliar coding artefacts. It is not desirable to re-train the model for every new audio codec.

Rather, the model should simulate the response of a trained expert human listener.

The difference between the original and coded signals could be anything. Where the target is

unknown, it is unclear what form the optimal detector should take. For this reason, another

approach is used in the current model.

Figure 5.14: Detection thresholds. (a) stochastic  (b) deterministic
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5.4.2 Chosen Strategy

In the current model it is assumed that “perceptual noise” is present within the HAS. This noise

limits the accuracy of the detection process, such that some of the information carried upon the

auditory nerve is lost in the subsequent neural processing. However, adding noise within the

model would create a stochastic detector. Though human responses are stochastic, the model is

required to simulate averaged human behaviour. For this reason, the internal noise is replaced

by a fixed detection threshold of 0.1 model units. Any differences below this threshold would

be lost in internal noise, and hence inaudible.

All the psychoacoustic experiments in Appendix C quote 70.07% detection probabilities. Since

this data is used to calibrate the model, the deterministic 0.1 model unit threshold is tied to a

stochastic 70.07% probability of detection. The difference detector operates upon the output

from the adaptation stage (5.3.5.2). Calibration of the detector is carried out from the data in

Appendix C by comparing the masker + target at threshold with the masker in isolation, as

processed by the model.

In the present model, no a-priori knowledge of the difference between the two signals is re-

quired. Instead, the model switches between two opposite methods that aim to remove the

internal noise, in order to reveal any difference between the two signals. Though the current

model does not add internal noise, the use of strategies that would be appropriate for removing

internal noise yields a close agreement with measured data. This indicates that this approach

may be used within the human auditory system.

The two noise reduction methods are as follows. The first assumes that there is a degree of

temporal uncertainty within the HAS, since the two signals are presented sequentially, rather

than simultaneously. For an input signal x, the internal noise of amplitude ∆a will be equiva-

lent to a temporal uncertainty of ∆t, if dx/dt ≈ ∆a. From the temporal masking data in

Appendix C, it is calculated that, for ∆a = 0.1 model units, ∆t = ± 5 ms. This means that any

signal difference which can be cancelled out by time-shifting one signal by ± 5 ms is inaudible

due to internal noise.

The second noise reduction method assumes that the internal noise has a zero mean. If this is

true, then integrating the signal will cause the noise to cancel, whilst any persistent signal
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difference will reinforce. This matches the measured phenomena whereby the threshold of

detection for a pure tone decreases as the duration of the pure tone increases.

Neither noise reduction method is appropriate in all situations. For example, the first method

will not detect a quiet, but persistent signal difference, whereas the second method will not

detect amplitude modulation. However, in combination, these two methods will detect the

following “just audible” signal differences:

1. noise in the presence of a tone

2. a tone in the presence of noise

3. a short gap within noise

4. a short tone after noise

5. a short tone before noise

6. a 1 dB level increment in a tone

All sounds are either entirely noise-like, entirely tone-like, or some combination of the two. All

artefacts consist of the addition of noise, the addition of tones, the subtraction of noise, the

subtraction of tones, or the change of amplitude of a signal component. Hence, this list covers

most possibilities. All these detection tasks are correctly undertaken by the two detection

methods described above. Other (untested) tasks may also be correctly handled by these two

detection methods.
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The circuits for implementing the two detection methods are shown in Figure 5.15, and are

described below.

The first method is appropriate for complex, or time-varying input stimuli, and is denoted

“noise” in Figure 5.15. The two signals are compared in the follow manner. For each incoming

sample, the current sample of the first input is subtracted from every sample of the second

input within a range of ± 5 ms. The minimum absolute difference yields the instantaneous

calculated perceived difference value. A CPD greater than 0.1 model units indicates that an

audible difference has been detected.

The second method is appropriate for simple or time-invariant input stimuli, and is denoted

“tone” in Figure 5.15. The two signals are compared in the following manner. The simple

difference is summed over ± 5 ms. The result is integrated with a time constant of 200 ms, and

the absolute value is calculated. In a parallel process, the order of these two steps is reversed.

The two parallel results are scaled and summed. Finally, the calculated perceived difference is

given by this value, or the instantaneous simple difference, if larger.

Figure 5.15: Difference detection circuit
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The model determines which strategy is most appropriate by examining the two input signals,

using the circuit denoted “index” in Figure 5.15. The variance of each signal is computed, and

the smaller value is used to calculate an index. As the index tends to zero, the “noise” circuit is

used, and as the index tends to one, the “tone” circuit is used. Most real-world signals are

somewhere between the two. The input signals to the detection circuit are the outputs from the

adaptation section. These will be stationary (i.e. the variance will tend to zero) for pure tone

inputs above 100 Hz.

In summary, the detection circuit switches between two possible detection strategies, depend-

ing on the nature of the input. With a steady-state input, the difference detector integrates the

difference over time, thus averaging the internal noise to reveal any persistent signal differ-

ences. With a time-varying input, temporal uncertainty within the HAS becomes significant,

and only instantaneous differences which cannot be accounted for by temporal uncertainty or

internal noise are detected.

5.5 Implementation Speed

The model described in this chapter processes a monophonic audio signal at 0.0001x real time

on a P-II 300 MHz PC under Windows 95. This means that the model processes one second of

audio in two hours. To compare two audio extracts, each of one second in length, would take

over four hours. This rate of processing, whilst typical amongst auditory models6, is not very

useful for the assessment of coded audio.

Most of the computational burden is due to the interpreted nature of the MATLAB environ-

ment. If the code was translated into C++ and compiled, significant speed increases would

certainly be achieved. Within the MATLAB environment, some of the standard functions are

written in C, whilst others are themselves interpreted code. Re-writing the code in order to

make maximum use of compiled functions in place of interpreted code offers significant speed

benefits, though the computation speed is still prohibitively slow.

                                                  

6 In experimental psychoacoustic models, it is usual to process a single critical band. This approach is not

suitable for the assessment of coded audio, since the entire audio bandwidth must be assessed.
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The following changes were made in order to produce a “fast” version of the model, which

would give similar results to the full version, but in a fraction of the time.

1. The code was transferred to a DEC alpha server, running MATLAB 5.1. This offered a

5.5x speed increase over the 300 MHz PC, without necessitating any changes to the code.

2. The amplitude dependent (gammachirp) filter bank is replaced by an amplitude independ-

ent (gammatone) filter bank. This filterbank is implemented by the MATLAB “filter”

function, which is written in C. The length of each filter within the filterbank is adjusted to

be appropriate for the frequency in question, such that the length of the filter fl in samples

is given by

))20*)/round(( ,2048(min fcfsfl = (5-9)

where fs is the sampling frequency, and fc is the centre frequency of the filter.

3. The number of bands is reduced from 96 to 48. A further reduction to 24 bands would be

possible, but would cause 80 Hz to be attenuated by 15 dB, due to its position half way

between two filters. 48 bands is a good compromise, as shown in Figure 5.5.

4. All constants are pre-calculated once, and stored on disk.

5. The final stage of the adaptation circuit is implemented via MATLAB’s “filter” function.

6. The Calculated Perceived Difference is determined once every 25 samples, rather than

every sample. The adaptation output is integrated with a time constant of 20 ms, so signifi-

cant sub-sampling of the signal is possible without losing information. However, to prevent

the true peak CPD from being significantly larger than the maximum sampled value, it is

unwise to increase the sub-sampling ratio beyond 25:1 for fs = 44100 kHz.

These modifications increase the execution speed from 0.0001x real time to 0.02x real time.

This means that the fast version of the model processes one second of audio in 45 seconds, as

opposed to two hours. This fast version of the model has been validated to ensure that it still

matches human performance in many areas.

Amplitude dependent filtering is the most significant feature absent from the fast version of the

model. However, the amplitude dependence, number of bands, and CPD sub-sampling can all

be specified or overridden by the user via input arguments to the model – see the MATLAB

code on the accompanying CD-ROM for further details.
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5.6 Demonstration

In order to demonstrate the performance of the model, the graphical results from a small selec-

tion of psychoacoustic tests are included in this section.

5.6.1 Threshold of audibility

The minimum audible field, or absolute threshold, represents the quietest sound of a given

frequency that is audible to a human listener. This has been measured many times. The meas-

urements from [Robinson and Dadson, 1956] and [ISO 389-7, 1996] are compared with the

performance of the model in Figure 5.16. The model matches human performance very well

above 1 kHz. Below this frequency, the model exhibits a lower threshold than a human lis-

tener. This discrepancy is due to the absence of low frequency internal noise within the model,

as discussed in Section 5.3.5.3.

Figure 5.16: Model prediction of the absolute threshold of hearing

The measured responses of human listeners are compared with the response of the model.
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The ripple within the model prediction is due to the use of 48 discrete gammachirp filters.

Where the test frequency matches the centre of the one the filters, the threshold is at its lowest,

and where the test frequency lies half way between two filters, the threshold is at its highest.

The ripple can be reduced by increasing the number of gammachirp filters. The choice of 48

filters in the fast version of the model is a compromise between execution speed and accuracy,

which the user can easily override.

5.6.2 Spectral Masking

If a narrow band of noise is introduced at 1 kHz, the threshold is increased around this region,

as shown in Figure 5.17, which can be found on the next page. This is a demonstration of

spectral masking, where any sound below the indicated threshold will be inaudible in the

presence of the noise. This graph was produced by comparing the noise in isolation to the noise

plus a test tone. The curve indicates the just audible level of the test tone in the presence of the

noise.
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Figure 5.17: Noise masking tone threshold exhibited by the model

To determine this threshold, the model takes the place of a human listener in a simulated psychoacoustic

experiment. The model compares the noise in isolation with the noise plus a test tone. If the model judges

that the test tone is audible, then the level of the test tone is decreased. If the model judges that the test

tone is inaudible, then the level of the test tone is increased. The comparison is then repeated with the test

tone at the new level.

The model is deterministic, so there is a constant threshold, below which the signal is always judged to be

inaudible, and above which the signal is always judged to be audible. When the level of the test tone

converges on this value (to within 0.1 dB), the value is stored, and the frequency of the test tone is

increased. Thus, the threshold is determined across the audible frequency range, as shown on this graph.

This simulated psychoacoustic test procedure was developed to demonstrate the model, and to plot Figure

5.16 and Figure 5.17; it is not used in the assessment of coded audio.
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5.6.3 Amplitude dependent filter response

A novel feature of this auditory model is the

amplitude dependent nature of the filterbank.

The response of the filters varies as shown in

Figure 5.18.

It can be seen that, as the loudness of the

stimulus increases, the attenuation below the

centre frequency is reduced.

A full list of the psychoacoustic experiments

that the model has correctly simulated can be

found in Appendix C.

5.7 Conclusion

An auditory perceptual model for the assessment of coded audio signals has been developed.

The model simulates the functionality of the physiology found within the human ear. The

passage and transformation of sounds from the free field to their neural representation has been

accounted for in the model. Finally, the performance of a novel detection network was cali-

brated using known psychoacoustic data.

Figure 5.18: Amplitude dependent

response of monophonic model
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6 

Spatial Masking

6.1 Overview

The majority of masking experiments concentrate on monaural listening; that is, the test

stimulus is applied to one ear only, or an identical stimulus is applied to both ears. Human

hearing is binaural, and in real listening environments we rarely experience identical signals at

both ears. Where the target signal and masker are separated in space, unmasking of up to 20 dB

can occur, compared to the monaural case. In this chapter, we review existing binaural mask-

ing data, and describe a psychoacoustic test in which the spatial masking properties of the hu-

man auditory system are investigated.1

6.2 Introduction

A large amount of quantitative data is available which describes the masking of signals within

the human auditory system. The audibility of tones in the presence of broadband noise (e.g.

[Bernstein and Raab, 1990]), narrowband noise in the presence of tones (e.g. [Moore et al,

1998]), and tones following bursts of noise (e.g. [Zwicker, 1984]) have all been extensively

studied. Through such studies, the spectral and temporal masking properties of the human

auditory system have been rigorously probed and quantified. However, almost all of these ex-

periments have employed monophonic stimuli in which the target and masker are co-located.

Historically, both stimuli were transduced by a single loudspeaker. More recently, headphones

                                                  

1 The experiment described herein was carried out jointly with Prof. Woon Seng Gan, Associate Professor of

Electrical and Electronic Engineering, Nanyang Technological University, Singapore.
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have found favour in psychoacoustic experiments, and all stimuli are presented to one ear in

isolation, or to both ears simultaneously (diotic presentation). Whatever the method of presen-

tation, the masker and target are perceived as originating from the same location, whether or

not it is the real location of an external transducer, or a perceived location within the listener’s

head.

In real listening situations, the signal we wish to hear (e.g. someone talking) rarely originates

from the same location as the background noise (e.g. air conditioning). Likewise, in a stereo-

phonic or multi-channel audio system, there is no guarantee that the unwanted noise and dis-

tortion will be co-located with the desired signal at any given time. Hence, existing mono-

phonic masking knowledge is insufficient to predict the audibility of coding errors under such

circumstances. For this reason, it is necessary to examine the audibility of one signal in the

presence of another signal at a separate location.

There have been many experiments to investigate the masking of lateralized sounds (for a re-

view, see [Durlach and Colburn, 1977], section IV, part C). In these experiments, the masker

and target are presented via headphones, and are perceived as being located at two separate

points within the listener’s head. The perceived interaural location of the stimuli is controlled

by manipulating the interaural time delay (ITD) and interaural level difference (ILD) for each

stimulus. At the extreme, the masker may be applied to one ear, while the target is applied to

the other. Alternatively, the target and masker may be applied to both ears at equal loudness,

and a delay added to the target signal at one ear only, yielding a phase difference between the

two ears. Usually, some combination of ITD and/or ILD is used to lateralise the target and

masker at different locations within the listener’s head, and the resulting masked threshold is

compared to the monophonic case.

To concisely summarise all available data, it can be stated that the target is more audible when

it is spatially separated from the masker. Hence, compared to the presentation of the masker

and target monaurally (diotic presentation), the amount of masking is reduced. This is referred

to as the Binaural Masking Level Difference (BMLD).

Such data indicates that processing non-co-located stimuli using a monaural auditory model

may over estimate the amount of masking. To put it another way, a monaural model may pre-

dict that something is inaudible, when, due to its perceived location away from the signal, it

may be highly audible.



SPATIAL MASKING

128

Unfortunately, the masking due to stimuli presented dichotically over headphones tells us little

about the masking due to sounds in the free field, i.e. presented via loudspeakers. This is the

more usual situation when listening to reproduced audio material, and is the target use for our

model. To extend our auditory model to incorporate human binaural hearing, we require data

that extends the usual noise masking tone, tone masking noise, and temporal masking experi-

ments to 3-dimensions. With such data, the model can be extended, calibrated, and verified to

correctly predict the masking due to real sound sources in real listening rooms.

Data from experiments carried out via loudspeakers is scarce. A summary of the most useful

references is given in Table 6.1, which can be found on the next page.

This existing data does not provide enough information on which to base a model of free-field

spatial masking. Most importantly, all the experiments study noise masking tone, or noise

masking impulses. There is no tone masking noise, or temporal masking data available for

spatially separated stimuli. In addition, individual experiments have the following problems.

 [Colburn and Durlach, 1965] and [Carlile and Wardman, 1996] are typical of the many sets

of headphone obtained data available, though the latter is interesting in that the stimuli

were placed at “virtual locations” via Head Related Transfer filtering. Neither give true

spatial masking data.

 [Doll and Hana, 1995] and [Santon 1987] use only 3 different masker locations, and 1 tar-

get location. The latter uses a variety of target tone frequencies.

 [Gilkey and Good, 1995] and [Saberi et al, 1991] give the most thorough spatial data,

testing various target and masker locations. However, the target is a series of band-limited

clicks, rather than a pure tone. Such data is useful for validating a working model, but pure

tone stimuli are more useful for gaining an understanding of the underlying auditory proc-

ess at the most basic level.

(this list is continued after Table 6.1.)



Target Masker
Reference

Signal Frequency Position Signal Frequency Position
Notes

Carlile +
Wardman

1996
tone 0.6 kHz, 4 kHz diotic noise

narrowband

broadband

virtual

40°, 90°

headphone presentation.
HRTF processed masker, sometimes fil-
tered to 1 critical band.

Colburn +
Durlach

1965
tone 500 Hz

ILD and ITD
varied

noise broadband diotic
headphone presentation.
lateralised stimuli.

Doll +
Hana

1995
tone 0.5 kHz, 4 kHz 0°

Notched
noise

At least 1 octave
around target. 0°, 20°, 40°

speaker presentation.
Noise Notch width = 0 Hz condition yields
free-field masking data

Gilkey +
Good

1995

click
train

0.387 – 0.938 kHz

1.72 – 4.70 kHz

5.20 – 14.0 kHz

180°, 135°, 90°,
45°, 8°, 0°

100°, 90°, 80°,
45°, 0°

noise

0.238 – 1.33 kHz

1.14 – 7.10 kHz

3.53 – 19.1 kHz

0°

90°

speaker presentation.
low, medium, and high-frequency data.
target and masker location varied.

Kidd et al

1998
tonal
series

8-part tonal se-
quence using 1 of

16 frequency
ranges within

215 – 6112 Hz

0°, ±30°, ±60°,
±90°

8 Syn-
chronised

noise
bursts

200 – 6500 Hz
0°, ±30°, ±60°,

±90°

speaker presentation.
1 of 6 possible tonal sequences must be
identified.

target-masker separation reported, rather
than actual locations.

Saberi et
al

1991

click
train

0.9 – 9.0 kHz

10° increments
horizontally,

30° increments
vertically

noise 0.7 - 11 kHz
30° increments
horizontally,

0° only

speaker presentation.
horizontal and vertical plane measure-
ments.

Santon

1987
tone

0.25, 0.5, 0.75, 1,
1.5, 2, 2.5, 3, 4

kHz
0° noise broadband 0°, 45°, 90°

speaker presentation.
only masker location varied129

Table 6.1: Summary of spatial masking experiments from the literature
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 [Kidd et al, 1998] set an identification task, where the listener is required to identify the

masked signal as one of 6 possible tonal sequences. This may or may not yield similar

masking thresholds to a pure detection task. A greater problem is that the paper quotes the

separation between masker and target, rather than their individual locations. The author

believes that averaging the data for target left masker front, target front masker right, and

target half-left masker half-right into a single 90° measurement destroys the usefulness of

the data for the present work.

Overall, some of these experiments ([Santon 1987], [Doll and Hana, 1995]) provide useful ref-

erence points, and others ([Gilkey and Good, 1995], [Saberi et al, 1991]) may be used to verify

the performance of the completed model. However, the lack of clear, complete information on

which to base and calibrate a model means that an investigation into spatial masking must be

carried out.

6.3 Spatial Masking Experiment

6.3.1 Aims and parameters of experiment

The aim of the current experiment is to investigate the spatial masking properties of the human

auditory system. This knowledge will be incorporated into an auditory model, to predict the

audibility of one sound in the presence of another, where the two sounds may be located at

separate points in space. This auditory model will then be used to predict the perceived sound

quality of multi-channel coded audio, replayed in a real 3-dimensional listening environment.

The exact details of the spatial masking experiment are set out in the next section. In this sec-

tion, we define the parameters of the experiment, based on the above stated aim.

The number of spatial locations considered must be large enough to yield adequate psy-

choacoustic data for the training of an auditory model, but small enough to be practical. With-

out moving the speakers during the test, the number of stimulus locations is limited by the

available number of identical speakers, which is 8. Due to the equipment and time available for

the test, all stimuli are located within a horizontal plane encompassing the listener’s ears. This

allows normal speaker stands to be used in the experimental set-up. Hence, vertical tar-

get/masker separations are not considered. As human hearing is assumed (without impairment)

to be left/right symmetrical, arranging the speakers in a semi-circular arc to one side of the lis-

tener yields the best angular spatial coverage in the chosen horizontal plane. The exact loca-
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tions are chosen to match an existing measured set of HRTFs. After the experiment, the at-ear

signals caused by each stimulus presentation can be generated by processing the stimuli via the

appropriate HRTFs. This capability will be used in the training of the auditory model.

The psychoacoustic tests should extend existing knowledge in the area of masking. The total

number of possible tests is constrained by the time allowed for the actual listening (2 weeks in

an anechoic chamber), and the duration of each test. The most important tests are those of

spectral masking, namely noise masking tone, and tone masking noise. There is time to inves-

tigate both phenomena at two different frequencies. For broad-band noise masking a tone, the

tone frequencies considered are 1 kHz, where the interaural level difference is the prime local-

isation cue, and 8 kHz, where the Head Related Transfer Function (HRTF) is the prime local-

isation cue. For tone masking narrow-band 1kHz centred noise, the tone frequencies consid-

ered are 1 kHz and 1.5 kHz, the latter giving an insight into masking of spectrally separated

stimuli.

Temporal masking is also considered, since the correlation between the masked threshold and

the spatial and temporal separation of sounds has never been studied. [Zwicker, 1984] studied

temporal masking for masker levels of 80 dB, 60 dB and 40 dB; tone frequencies of 2 kHz and

8 kHz; masker durations of 5 ms, 10 ms, 3 0ms, and 200 ms; and masker/target temporal sepa-

rations of 0 ms, 2.5 ms, 5 ms, 7.5 ms, 10 ms, 20 ms, 50 ms, and 100 ms. That is, 192 separate

masking experiments. To extend this knowledge to 7 different target locations would require

1344 separate masking experiments, each carried out on at least two subjects, at least twice.

Each determination of masked threshold takes around 1 minute. Hence, each subject would

consent to be tested for 45 hours (plus breaks between testing), and the testers would be pres-

ent for at least 90 hours. This is probably a severe underestimate of the required time, and is

well beyond the 2 weeks available. Hence, we will take a single point on the tests of [Zwicker,

1984] and investigate how the masking due to a particular frequency and temporal delay is de-

pendent on  the location of the target tone.
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In addition to these basic psychoacoustic tests, two more experiments are carried out; one to

explore the use of audio codecs in multi-channel reproduction systems, and the other to pro-

vide human performance data with which to verify the completed model. A major concern

when using psychoacoustic based codecs with multi-channel reproduction system is that pro-

gramme material and coding noise may become spatially separated due to matrixing operations

(e.g. Dolby Stereo encoded material) or coding errors. This scenario is discussed extensively in

[Gerzon, 1991], and is relevant when trans-

mitting a film with a Dolby surround sound-

track over a digital TV system employing

MPEG-1 layer II audio compression. In one

experiment, a surround signal is matrixed,

coded, decoded, and then de-matrixed, as

shown in Figure 6.1. The audibility of coding

errors in the de-matrixed signal is investigated,

and compared to those present in a signal

transmitted discretely via the same codec. In

another experiment, the coding noise and pro-

gramme material are intentionally reproduced

at separate locations (Figure 6.2), and the re-

lationship between the location and audibility

of the coding noise is investigated.

(a) discrete coding of signals (b) matrix coding of signals

Figure 6.1: Coding of surround sound signals

In the discrete case, the front and rear channels are coded via the left and right channels of a stereo codec. In

the matrixed case, the front and rear channels are matrixed to the sum and difference of the stereo channels

(as in Dolby surround, though the commercial system includes several refinements not implemented here).

These stereo channels are coded, decoded, dematrixed and scaled (not shown) to give the front and rear

channels.

Figure 6.2: Spatially separated codec noise

The original signal is fed to the front loudspeaker.

The noise introduced by the codec is isolated by

subtracting the original signal from the time-aligned

coded version. This codec noise is fed to each of the

speakers in turn, and the threshold of audibility in

the presence of the original signal is determined. The

pre-processing is carried out off-line before the test.
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6.3.2 Details of experiment

6.3.2.1 Psychoacoustic phenomena investigated

As discussed in the previous section, the following psychoacoustic tests were performed:

Exp. No. Psychoacoustic test Masker Target

1 Noise masking tone
Broadband (white) noise,

35 dB / Hz
1 kHz tone, 80 dB

2 Noise masking tone
Broadband (white) noise,

35 dB / Hz
8 kHz tone, 80 dB

3 Tone masking noise 1 kHz tone, 80 dB
1 kHz centred 80 Hz

wide noise, 80 dB

4 Tone masking noise 1.5 kHz tone, 80 dB
1 kHz centred 80 Hz

wide noise, 80 dB

5 Temporal masking
200 ms white noise,

80 dB

2 kHz tone, 5ms 80 dB

(10 ms after noise)

6
De-matrixed coded

audio
surround sound signal Codec noise

7
Spatially separated

codec noise
Music Codec noise

6.3.2.2 Generation of test stimuli

All stimuli were sampled at CD-quality standard, with a sampling frequency of 44.1 kHz. All

synthetic stimuli were generated using an internal floating-point representation of 32-bits, and

dithered to 16-bits for output. The start and end of all stimuli were hanning windowed with a

rise time of 10 ms, except for the temporal masking experiment, where the masking noise was

rectangular windowed, and the target tone was hanning windowed with a rise time of 1 ms.

The audio codecs used in experiments six and seven were [Syntrillium, 2000] (mp2) and [FhG,

1997] (mp3). The audio samples for experiment six were taken from [EBU, 1988]. The

“Drum” sample consists of 1 bass drum hit from track 29 placed in the rear channel, followed

by 1 cymbal hit from track 31-04 placed in the front channel. The “Speech” sample consists of

two words from track 50: the word “Christmas” placed in the rear channel, followed by the

word “Dinner” placed in the front channel. The audio sample for experiment seven was taken

from [Tampera – Feel it], the initial drum hit at 00:01, faded to 70 ms length, and reduced in

volume by 10 dB to match the other stimuli.
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Historically, wherever noise stimuli were employed in psychacoustic experiments, analogue

random noise generators were employed, with appropriate gating and filtering. A consequence

of this practice was that each presentation of masker or target noise was different. With the ad-

vent of digitally sampled stimuli, the same effect can only be achieved by generating many

different samples of noise. In the present experiment, a single noise sample is used throughout

each experiment. This changes the signal detection task slightly, as the ear can learn the char-

acteristics of a repeated noise burst in a way that is impossible with a sequence of different

noise samples (see Appendix B). However, this disadvantage is offset by two advantages.

Firstly, it reduces the complexity of the experiment, and the requirements for storage on the

audiotest PC. Secondly, it facilitates the subsequent reconstruction of the exact signals heard

by the human listener during the test. This will aid the auditory modelling process, but more

importantly, will speed up the model testing and verification process significantly. If different

noise samples are used, then the statistical spread of the data points is a function of the random

nature of the noise, as well as the stochastic process of human hearing and decision. To simu-

late this, the auditory model must also “listen” to many different samples of noise, and exam-

ine the spread to give a probability of detection. However, with a single noise sample, the

model only needs to listen to that noise once – it has no need to repeat the process to account

for human error, since it can account for the stochastic nature of human hearing internally.

Hence, by using a single noise sample, we greatly simplify the validation of the model.

All the targets and maskers used through the spatial masking experiment are included on the

accompanying CD-ROM.

6.3.2.3 Experimental set-up

The experiment was carried out at BT Laboratories, Martlesham Heath, Ipswich. The experi-

mental set-up is illustrated in Figure 6.3 - overview, and Figure 6.4 - detail. The listener was

seated in an approximately 6m x 5m x 4m anechoic chamber. An anechoic environment is es-

sential for the temporal masking tests, and desirable for all others, so that the stimuli arriving at

the listeners ears are uncontaminated by early reflections and reverberation. The walls, ceiling,

and floor of the anechoic chamber are lined with foam wedges, as is the inside edge of the

motorised door. With the test equipment in place, and the door partially open to allow emer-

gency access, the background noise at the position of the test subject was measured as 20 dB

A-weighted, using a B+K SPL meter fitted with an omni-directional microphone capsule.
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The experiment was administered via a Pentium II based 300MHz PC system, running the

Windows 95 operating system (SR-2.5). Many aspects of the test, including stimulus presenta-

tion, the collection and processing of user response data, and the automated training of sub-

jects, were controlled by a custom designed software suite, called “audiotest”, which is in-

cluded on the accompanying CD-ROM.. The only items located within the anechoic chamber

were a seat for the listener, the eight loudspeakers and stands, a PC monitor display, and a

cordless PC mouse. All equipment stands within the chamber were covered with sound ab-

sorbing material.

Figure 6.3: Apparatus used throughout the spatial masking experiment - overview

A listener sits within the anechoic chamber, surrounded by loudspeakers. All internal faces of the anechoic

chamber are covered by sound absorbing green foam wedges (only the back walls and floor are shown as

such in this diagram). A wire mesh acts as a supporting floor within the anechoic chamber. During testing,

the square aperture in the front right wall is blocked by a motorised door (not shown). Outside the chamber,

the control PC and audio equipment are supported upon a table. Audio connections are shown, as follows:

Red = digital, Blue = line-level, Green = speaker.



Figure 6.4: Apparatus used throughout the spatial masking experiment – detail136
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The audio data was sent via a CardD+ digital soundcard to an Akai DR-8 hard disc recorder,

which was used for Digital to Analogue conversion and channel switching. The PC soundcard

offered two synchronised digital audio output channels (stereo left and right), and these were

mapped to any two of eight channels using the DR-8. The eight channels of analogue output

from the DR-8 were fed, via passive pre-amps, to a series of LFD PA-1 power amplifiers, and

finally to the eight Audio Physic Step loudspeakers within the anechoic chamber. The eighth

loudspeaker (behind, and to the right of the listener) was only used in the matrixed audio test –

all other tests used the semicircle of seven speakers to the listener’s left.

6.3.2.4 Calibration

The playback level was calibrated such that a digital full scale 1 kHz sine wave replayed via

one loudspeaker produced a sound pressure level of 90 dB at the position of the listener’s head

within the anechoic chamber. This calibration was carried out for each channel individually by

measuring the SPL with a B+K sound pressure meter, and adjusting the passive stepped at-

tenuator as appropriate. Having calibrated every channel in this manner, eight attenuators were

found to be set at identical positions. This confirmed that the eight amplifiers and speakers

were matched to better than 1 dB.

6.3.2.5 Subjects

A total of six subjects were used for the listening test. The hearing of each subject was tested

using a B+K audiometer, calibrated to ISO R 398 (1964). Four subjects were found to have

perfect hearing up to 8 kHz (the upper limit used during these tests), whilst the other two

showed some hearing loss above 4 kHz. The two hearing impaired subjects were only used in

tests employing 1 kHz targets2, however their results will be treated with caution.

                                                  

2 Each subject’s hearing was measured at a convenient time between tests. Unfortunately, one hearing im-

paired subject had taken part in experiment two before their hearing had been tested. Their data for this ex-

periment was rejected, as noted in Section 6.3.4.
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6.3.2.6 Threshold determination

Each masking threshold was determined by a 3-interval, forced choice task, using a one up two

down transformed stair case tracking method. This procedure yields the threshold at which the

listener will detect the target 70.7% of the time [Levitt, 1971]. The process is as follows.

For each individual measurement, the subject is played three stimuli, denoted A, B, and C.

Two presentations consist of the masker only, whilst the third consists of the masker and tar-

get. The order of presentation is randomised, and the subject is required to identify the odd-

one-out, thus determining whether A, B, or C contains the target. The subject is required to

choose one of the three presentations in order to continue with the test, even if this choice is

pure guesswork, hence the title “forced choice task.” If the subject fails to identify the target

signal, the amplitude of the target is raised by 1 dB for the next presentation. If the subject cor-

rectly identifies the target signal twice in succession, then the amplitude of the target is re-

duced by 1 dB for the next presentation. Hence the amplitude of the target should oscillate

about the threshold of detection, as shown in Figure 6.5. In practice, mistakes and lucky

Figure 6.5: Transformed up/down tracking procedure
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guesses by the listener typically cause the amplitude of the target to vary over a greater range

than that shown. A reversal (denoted by an asterisk in Figure 6.5) indicates the first incorrect

identification following a series of successes (upper asterisks), or the first pair of correct identi-

fications following a series of failures (lower asterisks). The amplitudes at which these rever-

sals occur are averaged to give the final masked threshold. An even number of reversals must

be averaged, since an odd number would cause a +ve or –ve bias. Throughout these tests, the

final six (out of eight) reversals were averaged to calculate each masked threshold.

The initial amplitude of the target is set such that it should be easily audible. Before the first

reversal, whenever the subject correctly identifies the target twice, the amplitude is reduced by

6 dB. After the first reversal, whenever the subject fails to identify the target, the amplitude is

increased by 4 dB. After the second reversal, whenever the subject correctly identifies the tar-

get twice, the amplitude is reduced by 2 dB. After the third reversal, the amplitude is always

changed by 1 dB, and the following six reversals are averaged to calculate each masked

threshold. This procedure allows the target amplitude to rapidly approach the masked thresh-

old, and then finely track it. If the target amplitude were changed in 1 dB steps initially, then

the dissent to the masked threshold would take considerably longer, and add greatly to listener

fatigue. In the case where the listener fails to identify the target initially, then the target ampli-

tude is increased by 6 dB for each failed identification, up to the maximum allowed by the re-

play system (90 dB peak SPL at the listener’s head).

Figure 6.6 gives a top-down overview of the entire spatial masking experiment, from the seven

psychoacoustic phenomena under investigation, to the 10000+ stimuli presentations. Due to the

reversals and repetitions, each masking threshold is determined 48 times. Figure 6.6 can be

found on the next page.



Figure 6.6: Overview of the spatial masking experiment structure

Only the first one or two branches are shown, whilst the arrows to the right indicate further branches.
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6.3.2.7 Experimental Procedure

The test procedure for each listener (subject) was as follows. With the subject sat on the chair

within the anechoic chamber, the chair was adjusted such that the subject’s ears were in-line

with the centre of the loudspeaker to their left (speaker 4, at 90°). The subject was given the

cordless PC mouse, and instructed to look at the PC monitor at all times during the test. Other

than this, the subject’s head was not restrained in any way. Before the first test, audiotest

played the subject the following pre-recorded instructions, replayed via the front loudspeaker:

“In the following series of listening tests, the task is to select the odd-one-out. Each test

features three audio samples, “A”, “B”, and “C”. You should select the one that sounds

different from the other two. If you cannot tell any difference between the three samples,

please try and guess. If you answer correctly, you will hear this sound [bell]. If you

choose incorrectly, you will hear this sound [beep]. Please try the following example.”

There followed a simple, interactive example, consisting of two beeps and a beep plus a burst

of noise. The subject was not allowed to continue until they had correctly identified the odd-

one-out (the presentation containing the burst of noise). If they failed to so, audiotest played

the following message:

“That was the wrong answer. You can now see the correct answer highlighted in red.

Please try again in this new test, in which the correct answer may have changed.”

In practice, no subjects failed this test3. When the subject correctly identified the odd-one-out,

audiotest played the following message:

“Well done, you selected the right answer. You are now ready to start the listening test.

Alternatively, you may listen to these instructions again.”

                                                  

3 During the interactive example, two subjects who became very familiar with the instructions (i.e. bored)

intentionally chose the wrong answer. This demonstrated that audiotest performed as specified.
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If the subject opted to commence the test, the test administrator checked that they had no fur-

ther questions, then closed the anechoic chamber door.

Unbeknown to the candidates, the first threshold measurement in each experiment (consisting

of many stimulus presentations and eight reversals, as illustrated in Figure 6.6) was for training

purposes only. After this, a threshold measurement was taken at each target location. Follow-

ing each threshold measurement, the subject was given 20 seconds rest. Between the fourth

and fifth measurements (i.e. at the midpoint of the experiment), the subject was allowed an un-

limited amount of time to rest and stretch their legs within the anechoic chamber. After each

rest period, audiotest informed the subjects verbally of their current position within the test,

e.g. “This is test number three out of eight.” The candidates were released from the anechoic

chamber immediately after the final measurement. Each set of eight measurements (one train-

ing set, plus seven locations) lasted 15-20 minutes.

After a break of at least 20 minutes, the subject repeated the experiment. The two sets of

threshold measurements were compared, and if any pair of measurements differed by more

than 3 dB, the subject was asked to repeat the experiment for a second time, after at least 30

minutes rest. If, after three attempts, no two measurements of the threshold at a particular tar-

get location agreed to within 3 dB, then the subject’s results were marked for possible rejec-

tion.
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6.3.3 Results

6.3.3.1 Normalisation of threshold measurements

The raw data from each psychoacoustic experiment consists of two or three threshold determi-

nations for each spatial location from each subject. The raw data from experiment six (codec

noise) is shown in Figure 6.7(a). A general trend across subjects is apparent, though the data

points from different subjects are widely spaced. One method commonly employed to clarify

data from spatial masking experiments is to normalise each subject’s results to their threshold

at 0°. Thus the variations in threshold with angle are maintained, but the difference in absolute

threshold between subjects is removed. Figure 6.7(b) shows the results of this normalisation on

the data from experiment six.

6.3.3.2 Graphical results

The numerical results from each experiment are included on the accompanying CD-ROM in

both MATLAB 5.1 and Excel 7 format. The results from each experiment are reproduced

graphically below. The six reversals which are averaged to give each single threshold meas-

urement are not included in the error analysis. Each graph includes error bars of ± 1 standard

deviation, calculated from all threshold measurements for a single location by one candidate,

or all candidates (as noted on each individual graph). Graph (c) in each Figure includes the

data for the most reliable subject in each test, as discussed in Section 6.3.4.2.

(a) raw results (b) normalised results

Figure 6.7: Results of experiment seven, showing the effect of normalising each subjects’

thresholds to the value at 0°
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(a) raw thresholds averaged across all subjects
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(b) normalised thresholds averaged across all subjects
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(c) raw threshold averages for subject DR
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(d) normalised threshold averages for each subject

-14.00
-12.00
-10.00

-8.00
-6.00
-4.00
-2.00
0.00
2.00
4.00

0 30 60 90 120 150 180

azimuth / degrees

n
o

rm
a

li
s

e
d

 t
h

re
s

h
o

ld
 /

 d
B

Figure 6.8: Results of experiment 1: Broadband noise masking 1 kHz tone

(a) raw thresholds averaged across all subjects
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(c) raw threshold averages for subject DR
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(d) normalised threshold averages for each subject
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Figure 6.9: Results of experiment 2: Broadband noise masking 8 kHz tone
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(a) raw thresholds averaged across all subjects
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(b) normalised thresholds averaged across all subjects
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(c) raw threshold averages for subject DR
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(d) normalised threshold averages for each subject
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Figure 6.10: Results of experiment 3: 1 kHz tone masking 80Hz wide 1 kHz noise

(a) raw thresholds averaged across all subjects
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(c) raw threshold averages for subject SH
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(d) normalised threshold averages for each subject
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Figure 6.11: Results of experiment 4: 1.5 kHz tone masking 80 Hz wide 1 kHz noise
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(a) raw thresholds averaged across all subjects
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(b) normalised thresholds averaged across all subjects
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(c) raw threshold averages for subject WS
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(d) normalised threshold averages for each subject

-6

-4

-2

0

2

4

6

8

10

0 30 60 90 120 150 180

azimuth / degrees

n
o

ra
m

lis
ed

 t
h

re
sh

o
ld

 / 
d

B

Figure 6.12: Results of experiment 5: Temporal Masking

(a) raw thresholds for each subject: "Drum hit"
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(b) raw thresholds for each subject: "Speech"
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(c) averaged across all subjects: "Drum hit" sample
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(d) averaged across all subjects: "Speech" sample
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Figure 6.13: Results of experiment 6: De-matrixed coded audio
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6.3.4 Discussion

For each experiment, the plot of masked threshold against target azimuth reveals a general

trend which is different for each task. In some experiments, the errors are so small that accu-

rate, useable quantitative data may be extracted from the data. In all experiments, the trends are

clear enough that qualitative conclusions can be drawn about the variation of masked threshold

with target azimuth.

The final experiment yields the greatest variation in threshold with azimuth, possibly because

this is the only experiment to employ broadband stimuli as both target and masker. This may

explain why previous researchers have concentrated on broadband stimuli; the larger variation

in masked threshold with target azimuth gives a clearer picture of the effect of spatial masking.

Also, the 3-6 dB statistical variation found within much psychoacoustic data is less significant

where the measured effect is of the order of 20 dB. Compare this with the results of experiment

five: the inter-subject variation is again of the order of 5 dB, but here the variation in threshold

with azimuth is only 6 dB. In this instance, though a trend emerges from the data, the quantita-

(a) raw thresholds averaged across all subjects
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(c) raw threshold averages for subject DR
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(d) normalised threshold averages for each subject
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Figure 6.14: Results of experiment 7: Spatially separated codec noise
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tive data is less useful because the variation between subjects is nearly as large as the variation

with target azimuth.

In addition to some of the quantitative data being swamped by statistical errors, there are two

specific inconsistencies in the data which require investigation, as follows.

Experiment two: subject WS. Referring to Figure 6.9, the results from this subject are sig-

nificantly different from the others who participated in this test. This experiment tests the sub-

ject’s ability to hear an 8 kHz tone in the presence of broadband masking noise. The audiogram

of subject WS shows a 10 dB impairment at 8 kHz in the left ear. For this reason, the results of

subject WS in experiment two will be rejected.

Experiment six: subject DR: “speech” sample: mp3 dematrixed. The masked threshold for

subject DR is 27 dB lower than that achieved by the other candidates. Comparison with the

other experiments shows that this is drastically greater than can be expected due to inter-

subject performance differences. A close examination of this particular sample shows the pa-

rameters of the experiment to be unsuitable for this test sample, as described below.

This particular matrixed audio sample (“Speech”) was handled very badly by the mp3 encoder.

The codec low pass filters the out-of-phase signal component at 1.2 kHz. In the “Speech” sam-

ple, this caused most of the out-of-phase component (which is dematrixed to the rear speakers)

to be lost, though the in-phase component (which is dematrixed to the front speaker) was re-

produced faithfully. In the test, the listener compares the masker only (the original signal) with

the masker plus target (the original signal plus the “noise due to the codec”). As the codec re-

moves most of the signal, the “noise due to the codec” is the inverse of the signal, such that,

when added to the masker (the original signal), the result is almost silence (see Figure 6.15).

This occurs when the target signal is presented at 0 dB relative to the masker (i.e. at the same

level as coded), and is clearly audible.
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Figure 6.15: Problem signals in experiment six

A poor codec has removed most of the signal, as shown in the first pair of graphs, “Source signals”. In the

test, the masker is the original signal. The target is the coding noise, which is isolated by subtracting the

original signal from the coded signal. In this instance, the target is approximately the inverse of the

masker (as shown in the second pair of graphs, “Test signals”). The listener compares the masker to the

masker plus target. With the target at the original level, the masker and target almost cancel (as shown in

the fourth pair of graphs, “Comparison at 0 dB”). If the target is increased by 6 dB, then the masker plus

target is approximately the inverse of the masker signal (as shown in the third pair of graphs, “Compari-

son at +6 dB”). If the target is decreased by 6 dB, then the masker plus target signal is a scaled version of

the masker itself (as shown in the final pair of graphs, “Comparison at –6 dB”).
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A problem arises if the target signal is pre-

sented at +6 dB relative to the masker. As

Figure 6.15 illustrates, this is the same as tak-

ing the original signal, and adding twice the

inverse: the result is an inverted signal. Few

people can detect phase inversion, so this sig-

nal is indistinguishable from the original. This

yields a local minima in audibility around

+6 dB, as shown in Figure 6.16. In experiment

six, subjects WS and SH converged on this

local minima, whilst subject DR “jumped

over” this minima by successive correct an-

swers before the first reversal (during which

the step size is 6 dB, as discussed in Section

6.3.2.6). Having avoided the false minima, subject DR reached a realistic audible threshold in

the usual manner. If subjects WS and SH had not encountered the local minima, it is likely

they would have achieved similar thresholds to subject DR.

In conclusion, if the masker and target may be correlated, it is important to test for false min-

ima in audibility before carrying out a full psychoacoustic test. If any false minima are found,

then the target amplitude range must be bound to exclude them. In experiment six, the target

amplitude of sample “Speech” processed via mp3 dematrix should be prevented from exceed-

ing 0 dB.

6.3.4.1 Subject ability

The ability to perform well in psychoacoustic tests is not perfectly correlated to hearing ability

as measured by an audiogram. Training improves acuity in any given task, though in this test

there was no evidence that thresholds improved with repetition (after the initial training pe-

riod). This is surprising, since other tests (e.g. [Moore et al, 1998]) have indicated that a longer

training period may be necessary than was possible in this current series of tests. Adequate

training is defined such that further training would not produce an improvement in perform-

ance. The conclusion must be either that the current experiment consisted of adequate training,

or that so little training was employed that candidates never began to improve. The latter is un-

likely, since some performance improvement would be expected during 512 attempts at the

Figure 6.16: False minima in audibility for

experiment six at +6 dB

(drawn for illustrative purposes only – not from ex-

perimental data).



SPATIAL MASKING

151

same task (4 guesses x 8 reversals [inc. 2 not used for data] x 8 locations [inc. 1 used for

training] x 2 repetitions) if it was going to occur at all!

Though the training period was short, most candidates had the opportunity to overhear another

candidate carrying out the same task before them, so this may have helped. Another feature of

the experiment which may have compensated for the relatively short training is the require-

ment that the candidate repeats each measurement to within 3 dB, as discussed in 6.3.2.7. Had

the candidate improved significantly (more than 3 dB) between the first and second repetition

(possibly due to insufficient training before the first measurement), a further repetition would

be required, and the first measurement would be rejected. In practice there is no evidence of

this happening: candidates do not improve between the first and second repetition, rather the

differences are random in nature. However, the safeguard was there.

Even after subjects are trained adequately in a given task, there remain large differences be-

tween the masked thresholds exhibited by different subjects. The “best” subjects can detect

masked sounds that are up to 15 dB quieter than those just audible to the “worst” subjects, as

shown in Figure 6.17, which can be found on the next page. It is interesting to compare a sub-

ject’s ability to detect a signal in quiet (as measured by an audiogram) and their ability to de-

tect the same signal in the presence of a masker. The presence of a masker may raise the

threshold by tens of dB, e.g. for the 1 kHz tone used in experiment one, the threshold is raised

from 5 dB SPL in quiet to 45 dB SPL in the presence of the masker. A listener with poorer

hearing may have a threshold in quiet of 20 dB or more. This means that a 45 dB SPL tone in

quiet would be clearly audible. However, a 45 dB SPL tone in the presence of a masker is in-

audible to our impaired listener – not only has their absolute threshold been shifted upwards by

hearing damage, but the masked threshold has also been raised, in this case by 7 dB to 53 dB.
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Figure 6.17: Average masked threshold estimate for each candidate, sorted by experi-

ment

Data from each experiment are normalised to the overall averaged threshold for that experiment, thus only

inter-subject differences remain.

  

(a) subject SH – excellent hearing (b) subject SS – impaired hearing

Figure 6.18: Audiograms of two subjects from spatial masking experiment

The audiograms show hearing performance relative to typical human hearing thresholds (normalised to

0  dB). The apparent impairment at 500 Hz is present on all candidates audiograms, and is almost certainly

due to the low frequency noise from air conditioning present in the testing room. The anechoic chamber used

for the psychoacoustic experiments was quiet, but all other available rooms contained air conditioning, hence

there was no way to avoid this problem. As no experiments use stimuli under 1 kHz, having inaccurate

500Hz audiogram data was not thought to be a significant drawback.
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It is tempting to correlate threshold in quiet with masked threshold, and to explain all differ-

ence between listeners as arising from hearing damage as shown by an audiogram. Reference

to each subject’s audiogram shows that those with poorer hearing sometimes have higher

thresholds, as may be expected. In particular, ranking the subjects by threshold for detecting a

1 kHz tone in quiet (from the audiogram) gives the same order as ranking the subjects by

thresholds for detecting a 1 kHz tone in the presence of broadband noise (from experiment

one). However, for subjects with similar (good) thresholds in quiet, there can still be differ-

ences in masked thresholds – e.g. 3-4 dB between DR and SH in experiment four, and 4 dB

between DR and SH in experiment seven. Strangely, SS has the worst audiogram overall

(Figure 6.18), but his performance matches that of DR (the subject with the lowest thresholds

throughout) in experiment three. Finally, subject WS has a fair audiogram, but his thresholds

are even higher than his audiogram would suggest. As subject WS was involved in the creation

of the experiment, this shows that familiarity with the audio samples and test procedure is not

as great an advantage as might be expected.

Figure 6.19 shows the relationship between threshold in quiet and masked threshold for all ex-

periments. The data from each experiment has been normalised to leave only inter-subject dif-

ferences. After normalisation, the correlation coefficient is +0.4672, which indicates a weak

positive correlation.

This shows that poor performance in psy-

choacoustic tests is not entirely due to meas-

ureable hearing impairment.  If hearing im-

paired subjects were the only ones to exhibit a

poor correlation between threshold in quiet

and masked threshold, then the poor correla-

tion could be attributed to non-linear hearing

impairment. However, the masked thresholds

of DR and SH are consistently 4 dB apart,

even though both subjects exhibit no hearing

impairment. This indicates that, beyond the

mechanical condition of their cochlea, there

are higher auditory processes which vary be-

tween subjects. This makes the task of model-

Figure 6.19: Relationship between audi-

ometric threshold in quiet and masked

threshold

This graph demonstrates the poor correlation be-

tween these two quantities.
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ling an idealised listener even more challenging, and is yet another reason why two listeners

can have very different opinions about the perceived quality of a given audio system.

In conclusion, a candidate’s performance in masking tasks may be inferred in part from an

audiogram,  but there seems to be another separate talent or process involved in detecting

masked sounds that may be present to a certain amount in any individual. Some people are

simply better at hearing masked sounds than others, just as some people are more musical than

others – an audiogram cannot tell the whole story.

6.3.4.2 Subject reliability

In the previous section, it was suggested that the subject with the lowest thresholds may be

considered the “best” subject, since they can hear sounds that others cannot. However, another

measure of subject quality is the consistency of their masked threshold estimates. Figure 6.20

shows how the standard deviation of the masked thresholds varies between subjects for each

experiment. Subject WS is the least consistent subject in all but one experiment, whilst subject

DR is the most consistent subject in all but two experiments. Comparison with Figure 6.17

shows that assessing subject quality in terms of lowest average masked threshold yields the

same ranking as assessing subject quality in terms of smallest variance in masked threshold.
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Figure 6.20: Standard deviation of masked threshold estimate for each subject,

sorted by experiment
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Subject WS is judged the poorest subject by both methods, and subject DR is judged the best.

The reader will note that in Figure 6.8 to Figure 6.14 -(c), the data from the most reliable sub-

ject in each experiment is plotted separately, and it is this data that will be used to train the

auditory model.

Finally, it is important to remember that our directional hearing ability is due largely to the fil-

tering effect of the pinna upon the incoming wavefront. Each human pinna is unique, and so

the exact spectral features reaching each individual listener from a given point in space will be

different [Moller et al, 1995b]. This will give rise to variations between candidates in any ex-

periment that examines spatial masking, such that candidates may not even agree upon which

spatial location is the most or least audible in any given task. This is shown in some of the re-

sults herein, especially those from experiment three.

6.3.4.3 Role of head movement

A lower threshold value indicates that the candidate found the stimulus to be more audible.

Examining the results, it is surprising that so many of the 180° sources are easier to hear than

those at 0°. The HRTFs for these directions are almost identical at 1 kHz, and in a perfectly

symmetrical anechoic set-up there is no other reason for a source at 180° to be more audible

than one at 0°. However, if the candidate moves their head, even slightly, then the two source

positions cease to be equivalent, and the source at 180° is easier to hear.

The lower thresholds at 180° in the experiments employing 1 kHz stimuli may be due to head

movements, a slight asymmetry in the experimental set-up, or the candidates HRTFs at 1 kHz

not matching at 0° and 180°. The former is most likely, therefore these results must be taken to

represent the response of a candidate who is nominally still, but not necessarily motionless.

“Head clamped” responses may have been different. Note that the large difference between

thresholds at 0° and 180° in the spatially separated codec noise test are almost certainly due to

the HRTF, since a narrow spectral region around 9 kHz is 10 dB higher in the 180° HRTF

compared to the same region within the 0° HRTF.

6.3.4.4 Comparison with existing data

Experiments one to five take standard psychoacoustic tests, and extend them by separating the

masker and target. However, the first threshold measurement in each experiment was deter-

mined with the masker and target co-incident. These co-incident thresholds can be compared
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with those obtained by previous researchers. This will help us to judge the accuracy and valid-

ity of the current test.

Appendix D gives full details of the previous research data which is used as a reference, and

also the transformation of all the data into a common format of dB SPL for tonal signals, and

dB SPL /Hz for noise signals. Figure 6.21 shows up to 3 results from the listerature for each

experiment (E1-3) as well as the data from each subject in the present experiment. Both the

threshold values, and the variability between subjects, match those from previous experiments

very well.

6.3.5 Knowledge gained

The experiments described herein have given us data with which to develop a theory of binau-

ral masking, and to train and verify an auditory model. Beyond this, the results give some in-

teresting new insights into human spatial hearing acuity.

The most startling results were obtained in the temporal masking experiment. Unlike every

other task, thresholds are lowest if the target and masker are co-located. This may be because

the masker, which occurs first, dominates our auditory attention. If the target is moved away
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Figure 6.21: Comparison of experimental results with existing data
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from it, it may be difficult for us to re-focus on the target location in the time allowed (10 ms),

hence the threshold increases with target/masker separation.

The experiments with codec noise showed that separating the noise from the audio could have

audible consequences. In experiment seven, when the codec noise was moved 90° away from

the audio signal, it became 15 dB more audible. In experiment six, in the comparison of dis-

crete vs matrix transmission of surround signals via psychoaocustic codecs, errors in the ma-

trixed version were more audible in three out of four cases. It is difficult to draw general con-

clusions from the results of this experiment, since it used specific codec implementations and

audio samples. However, it shows that concern over the psychoaocustic coding of matrix audio

signals may be valid, but errors are nowhere near as audible as where the codec noise and

audio signal are intentionally separated.

6.4 Conclusion

In this chapter, the concept of spatial masking has been introduced. Existing data has been re-

viewed, and an extensive series of spatial masking experiments have been undertaken. The re-

sults from these experiments give new knowledge on human spatial hearing which will be used

to develop a binaural auditory model.
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7 

Binaural Auditory Model

7.1 Overview

In this chapter, the binaural processing within the human auditory system is considered. Exist-

ing models of binaural interaction are discussed. The monophonic model discussed in Chapter

5 is extended by the addition of a binaural processor. The resulting binaural auditory model is

calibrated with measured data, and is shown to correctly predict human performance in free-

field masking experiments and horizontal-plane localisation discrimination tasks. Finally,

directional accumulators are defined, to judge the overall change in the stereophonic sound

stage.

7.2 Introduction

It is often said that two ears are better than one. The presence of two ears allows the auditory

system to compare the signals at each ear, thereby deriving two benefits. Firstly, the interaural

time and level differences for a given sound source provide strong directional clues. Secondly,

if two sources are spatially separate, our two point “sampling” of the sound field allows us to

concentrate on one sound in the presence of the other. This ability can be measured in two

dimensions as the Binaural Masking Level Difference, or in three dimensions as Spatial

Masking.

The principle aim of the present model is to simulate binaural and spatial masking. The local-

isation of sounds is not a primary requirement of the present model. However, the two

mechanisms (binaural release from masking, and localisation) are closely linked, and the

present model may be adapted to localisation tasks using techniques described in the literature.
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Within this chapter, the term “binaural detection” will be used as a convenient description of

any task where binaural processing allows the listener to detect a change which is not audible

using monophonic (singled-eared) listening alone. The Binaural Masking Level Difference is

one such phenomenon. The spatial masking experiments described in Chapter 6 also count as

binaural detection tasks where the masker and target are separate, but not where the masker

and target are co-located.

The detection of a change in source location can also be referred to as a binaural detection task.

This is only true where the change in location is not detectable due to the signals reaching

either ear in isolation. Though the present model is not required to correctly predict the loca-

tion of a sound source, it should detect any change in perceived location. This is relevant in the

field of audio quality assessment. For example, the stereo image may be changed in some

manner by the coding process, and the model should detect this change.

7.2.1 Webster’s Hypothesis

[Webster, 1951] suggested that all categories of binaural detection may be equivalent at some

stage of internal binaural processing. It is assumed that the auditory system attempts to calcu-

late the interaural time delay by some form of correlation, convolution, or a functionally

equivalent process. It is suggested that the just detectable change in the output of this process

will correspond to the threshold condition in any binaural detection task. At the simplest level,

the just detectable change in the calculated ITD corresponds to the just detectable change in the

true ITD. Hence, this mechanism sets the limit on our spatial acuity. However, Webster sug-

gests that spatial masking may be attributable to the same mechanism. Thus, at threshold, the

presence of the target signal changes the calculated ITD by the same “just detectable” amount.

Webster apparently disproved his own hypothesis. However, in this chapter the hypothesis is

revisited using current auditory modelling techniques, with interesting results.

7.2.2 Data

The measurements described in the previous chapter will be the chief source of calibration data

for the binaural model. To test Webster’s hypothesis, the just noticeable change in incident

source angle is also tested. This is measured in [Mills, 1958] as equating to an ITD of 11µs at a

frequency of 1 kHz.
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7.2.3 Physiology

The monophonic model described in Chapter 5 was based upon the known physiology of the

human auditory system, and a similar approach will be attempted here. Unfortunately, the

binaural processing within the HAS is carried out within the neural domain. As such, it is less

well understood than the processes that transform sound information from an air-born pressure

wave into a neural signal. However, some knowledge has been gained from the mapping of

nerve fibre interconnections, and the probing of individual cells.

The role of the Superior Olivary Complex in the lateralisation of sounds was discussed in

Chapter 3. In summary, it is known that signals from both ears are compared within this re-

gion, and it is highly likely that interaural time and level differences are determined therein.

Whilst these are essentially lateralisation processes, they are the only known processes within

the auditory system where signals from both ears are compared. Thus, the known physiology

gives some weight to Webster’s hypothesis, suggesting that these same mechanisms may be

responsible for the binaural masking level difference, and the spatial masking phenomena

measured in the previous chapter. In addition, models considering only interaural time differ-

ence have correctly predicted binaural masking level difference data (e.g. [Colburn, 1977]).

For these reasons, both lateralisation and detection models will be discussed here in relation to

the present task.

7.3 Existing models

An excellent review of many models of binaural hearing is presented in [Colburn and Durlach,

1978]. A slightly more recent discussion is found in [Blauert, 1983]. The present review con-

centrates on models that have contributed in some way to the development of the present

model.
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7.3.1 Jeffress model

[Jeffress, 1948] proposed a model of binaural

interaction which has formed the basis of

much subsequent research. His hypothetical

neural network is shown in Figure 7.1. The

neural signals from the left and right ears are

assumed to travel at a finite rate along the

nerve fibres. In this way, each nerve fibre can

be thought of as a delay line. The “tertiary

fibres” are more likely to fire when signals

from the left and right ears reach them “almost

simultaneously”. Thus, it can be seen that the

matrix of fibres in Jeffress’ model acts as a

network of time delays and co-incidence

detectors, the purpose of which is to measure

the interaural time delay. Interaural intensity

differences are incorporated into the model by

assuming that louder signals propagate along

the nerve fibres at a higher velocity. This is

termed the “latency hypothesis”, and has received less universal acceptance than the rest of the

Jeffress model.

This model predicts the lateralisation of sound sources; the tertiary fibre exhibiting the largest

output is assumed to correspond to the perceived lateral location of the sound source. The

transformation from sound wave to neural signal is poorly specified in this model, as such data

was unavailable at the time of the model’s conception. However, with certain assumptions, this

model can predict much lateralisation data. These specific assumptions are common to most

models, and will be discussed in detail later, with reference to a more advanced model.

There are several inconsistencies between the predictions of the Jeffress model and the per-

formance of the human auditory system. The most notable problem is the model’s performance

near threshold. Since no internal noise is specified, the model exhibits accurate performance

below threshold, whereas the lateralisation accuracy of human subjects is impaired as the

intensity of a sound source approaches threshold. Another problem arises from the complete

Figure 7.1: Jeffress binaural interaction

model [Jeffress, 1948]
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trading of time and intensity information at the neural level. This suggests that a single laterali-

sation judgement is passed to the higher auditory centres. However, as discussed in Appendix

E, this is unlikely, as the presentation of a single source with contrary ITD and ILD cues can

lead to the perception of two sound sources. This is not possible with any model that combines

these two cues before they can be “perceived”.

Despite these problems, it may be possible to apply this lateralisation model to the task of

detection. This hypothesis is tested in [Webster, 1951]. Webster assumed that the lateralisation

model may yield extra information which is not apparent from the individual ears signals, and

this extra information may cause the Binaural Masking Level Difference. His hypothesis states

that, at threshold, a signal will cause a just detectable change in the output of the lateralisation

model. Webster did not have access to models of inner hair cell responses, or to the time do-

main analysis used throughout the present model. To test his hypothesis, he assumes that the

input stimulus passes through a bank of narrow band-pass filters (equivalent to the Basilar

Membrane response), and that the output of each filter approximates to a pure tone. The fre-

quency of this tone is equal to the centre frequency of the band-pass filter, and the phase of this

tone is determined by the input stimulus. Thus, after processing via the filter, a noise masker

and tonal target are both converted to tone-like signals. Where both are presented simultane-

ously, the resulting phase of the combined tone is calculated via simple algebra. The interaural

network detects the phase (time) difference between the two ear signals, and this difference is

dependent upon the amplitude of the target. Webster suggests that any stimuli which change

the interaural time difference by more than a fixed amount will be audible. The fixed threshold

is assumed to be due to internal noise.

Webster demonstrates that this model correctly predicts some binaural detection data. [Jeffress

et al, 1956] apply Webster’s hypothesis to further monophonic and binaural phenomena, with

some success. To account for a wide range of data, the value of the just detectable ITD must be

of the order of 100 µs. That is, a signal at threshold (where that threshold is due to binaural

unmasking) causes a change in the ITD of 100 µs. This is a major problem for the model, since

the just detectable ITD in experiments where this quantity is measured directly is around 10 µs

[Mills, 1958]. If Webster’s hypothesis is correct, it seems strange that the auditory system

should be an order of magnitude less accurate when using ITD information to detect the pres-

ence of a sound compared to the use of ITD information to locate a sound. However, this
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apparent contradiction may be a consequence of Webster’s deterministic model; a noisy or

stochastic model may solve this problem.

A significant fact emerges from these discussions, and this fact has a parallel in all binaural

models. In order to account for the reduced sensitivity of the HAS to larger ITDs, it is neces-

sary to specify the density of tertiary fibres. It is suggested that there are a relatively large

number of fibres corresponding to ITDs around zero, and that this number decreases as the

ITD increases. This simulates the reduced lateralisation accuracy exhibited for sound sources

outside the median plane. It also allows the model to correctly predict the threshold of detect-

ing sounds in the presence of non median plane located maskers.

7.3.2 Cross correlation and other models

The neural matrix at the heart of [Jeffress, 1948] is functionally equivalent to a cross correla-

tion process, providing that the correlation is only computed for a range of samples ±t, where t

represents the maximum ITD which can be detected by the binaural processor. [Sayers and

Cherry, 1957] pioneered this approach for lateralisation, whilst [McFadden, 1968] adapted a

cross correlation model for use in detection tasks. Many others have proposed variations on the

cross correlation model, but the details of these models are often incomplete, rendering any

quantitative analysis impossible (e.g. [Osman, 1971], where the value of the permitted time

and/or phase shifts are not clearly specified).

A complete consideration of all the known models of binaural interaction is not appropriate

here. However, given the obvious similarities between many of these models, a review of three

areas where there are large variations is presented.

Firstly, the newer models employ increasingly sophisticated pre-processing of the input

stimulus, before the cross correlation itself. If the pre-processing within the model matches that

within the HAS, then the model is found to simulate human performance in a wider range of

tasks [Theiss, 1999]. This is encouraging in respect of the present model, since the peripheral

processing matches that within the HAS to a significant degree of accuracy.

Secondly, the outputs of the cross correlation are often combined into a single “correlation

coefficient” (an unfortunate name, since this sometimes has little to do with the statistical

device of the same name). This can be used in detection experiments, together with two mono-
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phonic variables. Alternatively, all the “rightwards” coefficients may be summed, and com-

pared with the sum of all the “leftwards” coefficients. This comparison leads to a prediction of

lateralisation. There are yet further alternatives. Most significantly, the outputs of the correla-

tion can be combined in any optimum or sub-optimum manner, in order to match human

perception. Many models make bold claims to predict almost all binaural data, but require a

different weighting of the correlation outputs to accomplish each individual task correctly. This

may or may not represent the real processes present within the HAS, but such an approach

cannot be applied to the present time-domain model, which must correctly detect just notice-

able differences for a wide variety of binaural tasks, without prior knowledge of the task itself.

Thirdly, the inclusion of interaural intensity differences varies from model to model. No recent

model incorporates the latency hypothesis of Jeffress, but some still trade time and intensity

differences completely. Many lateralisation models incorporate a separate IID detector, and

feed both ITD and IID information to a decision device or weighting function (e.g. [Macpher-

son, 1991]). Some detector models (e.g. [Colburn, 1977]) do not include an IID detector, yet

correctly predict most binaural masking data. However, the efficacy of such models at higher

frequencies, where the ILD cue is most important, has not been extensively tested.

7.3.3 Colburn’s neural model

The most successful detection model is that of [Colburn, 1977], which is based upon hypothe-

sised neural processing. At the heart of the model lies a “binaural displayer” that is similar in

concept to the Jeffress model, but includes many physiologically relevant features. The entire

Colburn model is very well specified, allowing direct quantitative prediction. For these rea-

sons, the model will be discussed in detail. A diagram of the model is shown in Figure 7.2.

The signals for each ear are processed via a peripheral transducer. The output of this transducer

consists of a set of neural signals. Rather than specifying the firing probabilities upon the nerve

fibres, the actual neural spikes are transmitted. These spikes are caused by the firing of the

inner hair cells. Several fibres carry independent signals from each point upon the Basilar

membrane; hence, a true realisation of this model would incorporate many thousands of neural

signals. These signals are fed to both monaural and binaural processors. The monaural proces-

sor is not specified in detail, but it is assumed to account for signal detection where binaural

effects are unimportant. As such, it sets an upper threshold limit, and is assumed to predict the

correct masked threshold in all tasks where the BMLD is zero.
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Auditory nerve signals from both ears are fed into the Binaural Displayer, where they are

compared. Initial research [Colburn, 1973] suggested that an ideal binaural processor operating

on these neural signals would exceed the performance of the HAS. In order to match human

performance, the following two restrictions are imposed. Firstly, the signals on a given fibre

can only be compared with those upon one other fibre, having the same frequency selectivity,

originating from the opposite ear. Secondly, for a given pair of fibres, only firings that occur

“almost simultaneously” (with 100 µs) after an internal, interaural delay that is fixed for the

pair can be compared.

The illustration in Figure 7.2 is slightly misleading, since the output of the binaural displayer is

a two-dimensional matrix L(f,τ), where one co-ordinate represents frequency (f), and the other

represents interaural time delay (τ). Thus, for a noise signal presented to both ears without

interaural delay, the largest values within the matrix would lie along the column L(f,0); for a

pure tone of frequency f1, the largest values would lie along the row L(f1,τ). The value at each

point of the matrix is the total count of the coincidences for that frequency and delay over the

stimulus interval. This represents an important restriction of many binaural models. Rather

than producing a time varying output, the model commences a count or integration at the start

Figure 7.2: Colburn’s binaural interaction model [Colburn, 1977]
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of the stimulus, and only post-processes the total value that has accrued at the end of the

stimulus interval.

As in the Jeffress model, the distribution of the coincidence detectors is non-uniform. [Col-

burn, 1977] explicitly states the distribution p(τ), thus:
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where τ is the interaural time delay corre-

sponding to the fibre pair, C is chosen to give

p(τ) unit area, and all time units are in ms. A

plot of p(τ) is shown in Figure 7.3. ITDs above

1-2 ms are of little importance within the HAS

because larger ITDs do not occur for real

world sound sources. This limit is due to the

distance between ears, which is equivalent to a

delay of around 1 ms.

The output matrix of the Binaural Displayer is

fed into an Ideal Linear Binaural Analyser.

This calculates a weighted average of all the matrix components, which is then judged by an

ideal decision maker. The weighting coefficients within the analyser are chosen independently

for each task. For example, where the task is the detection of a 1 kHz tone within broadband

noise, the fibres corresponding to a frequency around 1 kHz are likely to contain the most

pertinent information. The ideal decision maker will determine whether the binaural decision

variable is above or below a pre-set threshold, and flag the presence or absence of the target

appropriately.

Figure 7.3: p(τ) distribution of coincidence

counters with ITD in Colburn’s model
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The model is stochastic, due to the peripheral transducer, which simulates hair cells firing in a

pseudo random manner. Stochastic or deterministic stimuli may be used. Within a masking

experiment, the threshold is defined as the amplitude of the target (or phase of the target,

depending on the nature of the experiment) at which the target is correctly detected in 75% of

the stimulus presentations. Rather than attempting a time-domain simulation (which would

have been impractical in 1977), Colburn creates analytical solutions. This limits the model,

since it can only be applied to sources for which formulaic representations of the output of the

peripheral transducer are known. There is no fundamental reason why a time-domain imple-

mentation of the model could not process any arbitrary signal, by simulating the signal paths

through the model. However, the required number of neural fibres makes this task computa-

tionally burdensome, even at the present time.

A model suitable for time-domain implementation may be formulated as follows. The model

will be based upon the model of Colburn, with some significant alterations. These alterations

may or may not cause the performance of the model to disintegrate beyond use, and this is one

important reason for testing and evaluating this approach.

Firstly, the peripheral transducer may be replaced by the monophonic model described in

Chapter 5. The decision device of the monophonic model is not needed, nor is the final 20 ms

low pass filter of the hair cell response, since this removes the fine structure of the hair cell

response which required by the interaural time delay calculation.

Secondly, the model can be converted from stochastic to deterministic. This may worsen

performance near threshold, but it will allow the use of one pair, rather than many pairs of

neural fibres per frequency. As discussed with respect to the monophonic model, this compro-

mise removes the repetition inherent with a time-domain stochastic model.

Thirdly, the process of summing the coincidence occurrences over the entire stimulus presen-

tation is not appropriate if the stimulus is a long, time varying signal (e.g. music). It is

suggested that a temporal integration window may be appropriate.

Finally, the manner in which the integrated signal is post-processed cannot be task dependent.

Whilst it is reasonable to weight the contributors to the decision variable in a task dependent

manner, this approach is not applicable to an audio quality assessment model, where the nature

of the possible defect is not always known. It is suggested that the premise of Webster, namely
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that any target at threshold produces a just noticeable change in ITD, may be used to develop a

simple universal detector.

A new binaural interaction model will now be described, which is based upon the Jefrress and

Colburn models, modified in these four respects.

7.4 Binaural model

In the following sections, each stage of the model is described in detail.

7.4.1 Pre-processor

The monophonic model described in Chapter 5 is used as a pre-processor for the binaural

model. All procedures and comments pertinent to the monophonic model are also relevant

here. Two monophonic models are employed, one for each ear. In addition to acting as pre-

processors to the binaural model, the monophonic models are also used exactly as before in

order to provide detection of monophonic differences. The physiological based sections of the

monophonic model are analogous to the peripheral transducer within Colburn’s model. The

difference perception module performs the same role as the Monaural Processor, decision

variable, and decision maker within Colburn’s model.

The final low pass filter within the physiological section of the monophonic model forms part

of the monophonic detection process. As such, it represents a physiological component within

the higher processing centres, rather than a process that affects the signal upon the auditory

nerve. The input to the binaural model is taken from immediately before this filter, as shown in

Figure 7.4: Adaptation circuit from monophonic model

showing input from gammachirp filter bank, and outputs to monophonic difference detector and binaural

processor
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Figure 7.4. This signal represents the inner hair cell firing probability, which is a deterministic

variable. This is in contrast to Colburn’s model, which uses stochastic hair cell firing events.

Since the monophonic model is deterministic, then the binaural model will also be determinis-

tic, so long as no noise sources are added within the binaural processor.

7.4.2 Element by Element Vector Multiplication

The signals from each monophonic processor are fed into the network shown in Figure 7.5,

known as the Element by Element Vector Multiplier (EEVM). This provides a finite length

partial correlation, carried out on a sample by sample basis. The process is carried out in

MATLAB by calculating the vector dot product between the two rows of samples. If the op-

eration and function of this network is clear, the reader may wish to pass over the following

paragraph.

An appropriate way to visualise the EEVM is to imagine the time versus amplitude signals

from each ear travelling towards each other from opposite directions. As the signals overlap,

the instantaneous amplitudes of the left and right signals at each point of overlap are multi-

plied. The result of this multiplication is a time varying series, or two dimensional matrix,

where one dimension is time. The other dimension, which corresponds to left/right location in

this imaginary view, is an indication of interaural time delay. Signals that reach the right-hand

ear first give rise to an internal peak on the left-hand side, and the opposite is also true. This

mirroring occurs because the signal from the right-hand ear is travelling from right to left in

this picture, and will travel a long way leftwards before meeting the delayed signal coming

from the left-hand ear, thus giving rise to a peak.

Figure 7.5: Element by Element Vector Multiplier
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In the symmetrical network shown, both ear signals slide past each other on a sample by sam-

ple basis, i.e. there are delays in both signal paths. One unwanted result is that a given sample

from the left ear will be multiplied by every second sample from the right ear. For example, the

first sample from the left ear will be multiplied with samples two, four, six, eight, and so on

from the right ear. This approach is less complex to implement than the multiplication of every

sample, since this latter approach would require half sample delays, or else would generate two

output samples for every input sample. Skipping every other sample in this manner does not

cause significant problems (e.g. aliasing), because the signal is low-pass filtered within the

preceding monophonic model.

The total EEVM length is chosen to be 5 ms, so contra-lateral signals separated by more than

5 ms are never compared. If the sampling frequency is given by fs, then the EEVM is carried

out over N samples, where

)005.0round( fsN = (7-2)

7.4.3 Windowed summation

In the models of both Colburn and Jeffress, the coincidence detectors only respond to signals

that occur “almost simultaneously”. The response of the coincidence detector could be charac-

terised by a near-rectangular time-domain window function, centred on the time delay in

question. The width of this window is approximately 100 µs [Colburn, 1977]. Values of 50-

100 µs have been used to represent “almost simultaneously” in most quantitative binaural

models.

A similar effect can be achieved via the EEVM by grouping the outputs into 100 µs blocks,

and summing the outputs in each block. This process is illustrated in Figure 7.6.

Figure 7.6:Rectangular windowing of EEVM output by summation
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There are three problems with this approach. They occur because Colburn describes a continu-

ous time stochastic model, whereas the EEVM forms part of a sampled time deterministic

model.

Firstly, at typical audio sampling frequencies (e.g. 44.1 kHz), blocks of 100 µs do not sit

evenly within whole samples. In Figure 7.6, each block length must be an integer number of

samples. At 44.1 kHz, the block lengths must be multiples of 22.676 µs. Such a restriction

severely limits the possibility of tuning the model to match human perception.

Secondly, the coincidence detectors are not spaced at regular 100 µs intervals, even though

each coincidence detector has a 100 µs range, this does not mean that the coincident detectors

are spaced 100 µs apart. There will almost certainly be some overlap between the detectors

within the HAS. Not only is the neat division implied by Figure 7.6 unlikely to arise in neural

processing, but also the stochastic nature of neural processing requires redundancy of informa-

tion, so that the signal can be detected within the internal noise. Overlapping detectors would

yield the required redundancy.

Finally, the distribution of coincidence detectors is not uniform for all values of interaural time

delay. A function describing the distribution was introduced in Section 7.3.3. If this distribu-

tion is to be matched by non-overlapping constant width rectangular window functions, this

implies there will be gaps between the window functions in the regions corresponding to larger

interaural delays. However, these gaps would give rise to regions where the HAS is unable to

locate a sound source. Such arbitrary gaps do not exist within the HAS – rather, the decrease in

density of coincident detectors, combined with the internal noise, reduces the information

available at higher ITDs. In effect, the signal to noise ratio of the ITD determination process

becomes poorer as the ITD increases, so the spatial accuracy decreases.

This loss of resolution for high ITDs can be simulated within a deterministic model by varying

the window width (rather than detector density) in accordance with the distribution function

described by equation (7-1). However, if a rectangular window is employed, then the window

transitions must occur at integer sample locations. After rounding to integer sample bounda-

ries, the specified distribution function would be severely compromised, and the performance

of the HAS would be poorly matched.
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In effect, the spacing of the coincidence detectors (and the statistics of the internal noise) limit

the accuracy of the internal ITD calculation. Using the same technique discussed in Chapter 5,

the stochastic detection of a signal in noise can be replaced by the deterministic imposition of a

fixed threshold. Where the signal exceeds the threshold, this is functionally equivalent to being

detected within the internal noise. In the binaural detector, it is not the presence or absence of

the signal that must be detected, but the location of its peak. Hence, the threshold value defines

the minimum detectable change in internal peak location.

Using this criterion with a rectangular EEVM window would lead to undesirable results. The

window function is effectively sampling in the time delay domain, hence a rectangular window

would lead to aliasing within this domain. As the peak moves within the window, no change is

detectable, but as the peak moves from one window to the next, the change is detected. This

would cause the minimum audible angle to oscillate in the time delay domain, dipping at

window boundaries where the process is most sensitive. Such an effect is not found within the

HAS. A rectangular EEVM window within a deterministic detector causes problems at win-

dow transitions, and the position and spacing of these transitions is vital.  A rectangular

window within a stochastic model is effectively smoothed by the internal noise, and the prob-

lems at window transitions are also smoothed by this noise.

All these factors suggest that a different window shape is required within a deterministic model

to yield the same effect as the rectangular window within the stochastic model. The solution is

to use a series of overlapping gaussian windows. A gaussian distribution is given by the fol-

lowing equation:
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where µ is the mean, and σ is the standard deviation.
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The manner in which a single gaussian window acts upon the output of the EEVM is illustrated

in Figure 7.7. A group of time-varying EEVM outputs are multiplied by the gaussian window

function, and summed into a single time-varying signal.

A series of gaussian windows are required. n is defined as an index into the time-varying

EEVM outputs, such that n can be any value between 1 and N (defined in (7-1)). m is defined

as an index into the time-varying outputs of the gaussian window summation, such that m can

be any value between 1 and the number of gaussian windows M. Both M and N are chosen to

be odd, so that the central window and EEVM output can be easily identified. The series of

window functions can be described by the following equations:
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Figure 7.7: Gaussian windowing of the EEVM output to generate one channel for further

processing
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where p(τ) is defined in equation (7-1). Since the outputs of the EEVM are spaced according to

the sample rate fs,

fs

n
nt =)( (7-6)

The mean of each gaussian function is given by τ(m), which represents the interaural time

delay at the centre of the gaussian window. τ(m) cannot be defined via a single formula. In the

MATLAB implementation of the model, it is calculated via the following criteria:

)()(
22

NM t=τ (7-7)

This equation specifies that the central gaussian window is centred on the central EEVM out-

put. Whilst this is not essential, it acts as a reference point, and aids visual inspection of the

output from binaural processor. Since M and N are both odd, and MATLAB only accepts

positive integer indexing into arrays, this equation is correct if both indices are rounded up-

wards. The means of the other gaussian windows are specified iteratively, working outwards

from the central window, thus:

)1()1()( −+−= mmm σττ for M > m > M/2

)1()1()( +++= mmm σττ for M < m < M/2 (7-8)

A set of gaussian window functions generated

using these criteria is illustrated in Figure 7.8.

The height of each window is normalised to

give each window unity area.

This set of gaussian windows act in the time-

delay domain, but the information within this

domain is itself changing on a sample by sample

basis. The auditory system does not react in-

stantaneously to this information, and a suitable

process is required to simulate this fact.

Figure 7.8: Gaussian window bank to sum

outputs of EEVM into channels
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7.4.4 Time domain windowing of binaural processor output

As discussed in 7.3.3, Colburn’s model counts the number of coincidences that occur upon

each fibre pair over the entire stimulus interval. This approach is not appropriate for time

varying stimuli, and another is sought.

Perceived lateralisation does not depend on the

instantaneous output of the EEVM. As dis-

cussed in Chapter 3, the HAS exhibits binaural

sluggishness, and does not respond immedi-

ately to a change in the binaural aspect of a

stimulus. Most models simulate this property

via a leaky integrator, though the choice of

time constant varies. A leaky integrator im-

plies a single sided exponential window

function, as shown in Figure 7.9. This is an

unfortunate choice, since it causes the model to

respond immediately to changes in the binaural

aspect of the stimulus, though it does cause the

lateralisation perception to persevere beyond the offset of the stimulus.

A leaky integrator was tested with the present model. It was found that erroneous lateralisation

judgements occurred at the onset of sounds. Though a leaky integrator is computationally

efficient, a more accurate solution is sought.

Recently, [Culling and Summerfield, 1998] have tried to define the shape and duration of the

binaural temporal integration window. From experimental data, it appears that a 100 ms

asymmetrical gaussian window is appropriate1.

                                                  

1 Culling and Summerfield warn against the blind adoption of this window for binaural auditory models such

as the one developed herein because there is evidence that the auditory system can occasionally reset the

binaural temporal integration process during brief periods of silence [Yost, 1985]. However, the criteria

which cause the reset during some periods of silence, but not others, has yet to be determined. As the tempo-

ral window fits almost all known data, it is the best option currently available, and is used within the present

model.

Figure 7.9: Single sided exponential

response given by a leaky integrator
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A computationally efficient implementation of an asymmetric gaussian window function is not

immediately obvious. An FIR filter would require many thousands of taps. For example, at a

sampling frequency fs = 44.1 kHz, the suggested window function would require 20000 taps to

achieve accuracy down to –25 dB. Such a filter is required for each output channel of the

previous window function (there being 31 binaural channels in the present implementation).

Also, recall that the EEVM will be performed on each of the 48 channels of the monophonic

model output. Thus, the temporal window will be applied 1488 times. With 20000 taps, this

equates to 29760000 multiply and accumulate operations per input sample. The exact compu-

tation time for this operation has not been calculated, but it would certainly require several

hours of processing for 1 second of input using current hardware.

The computationally efficient leaky integrator is too inaccurate, while the accurate gaussian

window is too computationally burdensome. For this reason, a compromise is sought. Figure

7.10 shows the window functions considered by Culling and Summerfield, and Figure 7.11

shows the mean goodness-of-fit [Snedecor and Cochran, 1989] for each of these window

functions. A lower χ2 value indicates a better fit. The simple window functions out-perform

those with more parameters (called floor and skirt), and the gaussian window functions provide

the best overall fit. However, the most striking feature is that all the windows are so similar in

their goodness-of-fit. Whilst a single sided exponential response (the leaky integrator) is a poor

choice, the double sided exponential window function is almost as good as the gaussian. If an

efficient double sided exponential can be implemented, then it would represent a suitable

compromise.

Figure 7.10: Possible binaural temporal windows

[Culling and Summerfield, 1998]

Figure 7.11: Goodness-of-fit for each

of the window functions in Figure

7.10
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A simple IIR filter can only generate a single sided exponential response. However, by using

two such filters, and operating one of the filters in the reverse time domain, it is possible to

generate a two-sided exponential filter. Moreover, since each side of the response is dependent

upon a separate filter, an asymmetric window can be generated, and the time constants of each

slope can be adjusted independently.

From the data of Culling and Summerfield, it

appears that the ideal window may be slightly

longer at lower intensities, and possibly be-

comes shorter at higher frequencies. However,

current data does not make either dependence

clear, and the best approach is to generate a

single window function that can be modified

to be frequency and intensity dependent if

reliable data becomes available. The appropri-

ate window shape is calculated from the data

in [Culling and Summerfield] by averaging the

best-fit asymmetric exponential window

responses, as shown in Table 7.1.

Thus, Pr = 41.4 ms and Pf = 26.3 ms. P is the time constant of the exponential, such that

P

t

etf
−

=)( (7-9)

level / dB freq. / Hz Pr / ms Pf / ms

40 1000 37.7 10.6

40 500 39.9 27.8

40 250 59.7 34.3

40 125 28.8 39.8

50 500 33.4 16.4

30 500 42.9 29.5

20 500 47.4 25.9

Average: 41.4 26.3

Table 7.1: Time constants of exponential

window from [Culling and Summerfield,

1998]
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In psychoacoustic parlance, “forward” refers to

the response before the stimulus, and “back-

ward” or “reverse” refers to the response after

the stimulus. Hence, Pr is the time constant of

the IIR filter acting in the forwards time do-

main, which gives the exponential decay after

the stimulus. Conversely, Pf is the time con-

stant of the IIR filter acting in the reverse time

domain, which gives the exponential response

before the stimulus. To compute the IIR filter

response in the reverse time domain, the input

stimulus is reversed, processed via the filter,

reversed a second time, and added to the out-

put from the forward-time filter. The overall

response is shown in Figure 7.12.

Having smoothed the output of the EEVM in both the time-delay and time domains, three

further stages are required to complete the calculation of the interaural time delay.

7.4.5 Subtraction of the mean

At this stage in the binaural processor, the signal peak in the time-delay domain is an indica-

tion of the ITD, but it is swamped by changes in the overall amplitude. The amplitude is

irrelevant to the ITD, so this information should be removed. This step is not essential to the

model, but it does simplify subsequent processing: before this stage, the maximum binaural

signal amplitude is a function of the input signal amplitude. After this stage, the maximum

binaural signal amplitude is an indication of the accuracy of the ITD estimate.

This transformation is achieved by subtracting the instantaneous mean of the binaural channels

from each binaural channel.

Figure 7.12: Asymmetric exponential

window function
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7.4.6 Oversampling

The contents of the channels of binaural processing at this stage represent the information that

is available to the auditory system. However, the channel containing the largest value does not

represent the ITD, since the channels are spaced approximately 50 µs apart, but the auditory

system can detect a 10 µs change in ITD. At first sight, this is a severe mismatch between the

model and human perception. However, by comparing the relative signal amplitude in the

channels either side of the maximum value, an ITD estimate may be calculated that is not

rounded to a single channel. From sampling theory, it is known that a linear interpolation is not

the best way to determine the true location of an inter-sample peak. Greater accuracy may be

achieved via optimum oversampling. This approach has been suggested by [Theiss, 1999],

where the data is oversampled, and smoothed using a gaussian window.

In the MATLAB implementation, the in-built resample routine provides a fast and efficient

solution, and is used in the present model. The channels are oversampled by a factor of one

hundred, which yields a resolution of 1 µs. This is ten times greater than the measured accu-

racy of the human auditory system, since matching the accuracy at this stage would prevent the

model being tuned in the detection process that follows2. The use of oversampling in this

manner is discussed further in Appendix F.

7.4.7 Peak Determination and confidence value

After oversampling, the channel containing the peak value represents the calculated ITD. This

ITD infers the lateral location of the sound source.

There are three problems with this approach. Firstly, the binaural model will always calculate

an ITD value, even during silent intervals. This ITD value is meaningless, and should be ig-

nored. Secondly, the accuracy of the ITD calculation is independent of the stimulus intensity.

This is in contrast to the performance of the HAS, where the minimum audible angle reduces

with stimulus intensity. The just noticeable phase difference measurements from [Zwislocki

and Feldman, 1956] are re-plotted in Figure 7.13 to show just detectable ITD as a function of

                                                  

2 A 10 µs change in ITD can only be detected under controlled listening conditions. If less critical listening is

simulated, an oversampling ratio of ten may be adequate, thus increasing computational efficiency.
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stimulus intensity. As the stimulus intensity is

reduced from 70 dB to 30 dB, the just detect-

able ITD change is doubled. The model should

simulate this. Finally, the ITD value calculated

for a diffuse sound source is of questionable

value, and it should be treated accordingly.

Unfortunately, no quantitative data is available

to define this phenomenon, but some appropri-

ate mechanism must be incorporated into the

model to prevent undesirable results from the

analysis of diffuse sound fields.

To solve these three problems, a confidence value is attached to each calculated ITD. This

confidence value is used to weight the difference detection process, as described in the next

section. A confidence value of zero is attached to ITD estimates generated during silent inter-

vals, and a confidence value of one is attached to ITD estimates for sounds over 70 dB. The

confidence value is calculated from the height of the oversampled peak in the time-delay

domain. Thus, low confidence values are also attached to ITD estimates for diffuse sources,

which yield lower peaks.

Defining a transform from peak amplitude to confidence value is not trivial, since the confi-

dence value is simulating three separate psychoacoustic phenomena. To simulate all three

effects correctly, three separate mechanisms would be required, but without appropriate data

this is impossible at the present time. Hence, a single confidence value is used as a compro-

mise.

The data in Figure 7.13 from [Zwislocki and Feldman, 1956] is used to calibrate the confi-

dence value above absolute threshold, as explained in Appendix G. The transform from peak

amplitude to confidence value consists of two psychometric functions. Psychometric functions

define the probability of detection near threshold in a variety of psychoacoustic tasks. Two

such functions are required because two break-points are found in the data: a slow increase in

threshold with decreasing intensity, and an abrupt cut-off at the absolute threshold of hearing.

This is discussed further in Appendix G.
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The confidence value is given by the following equation:
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where pa is the oversampled peak amplitude, T1 = 1, m1 = 5 (to reduce accuracy at lower inten-

sities) and T2 = 0.05, m2 = 100 (to reduce the confidence value to zero at absolute threshold).

In the binaural processor, a confidence factor associated with each lateralisation judgement is

calculated using the above equation.

7.4.8 Difference detection

The final stage in the binaural model is the difference detection unit. As discussed earlier, this

should correctly detect the just noticeable change in ITD, and the just noticeable presence of

the target in a binaural or spatial masking experiment. Webster suggests that the presence of a

target sound at threshold may cause the same shift in the internal binaural correlation pattern as

a minimum audible change in angle. However, his analysis shows that the former causes ten

times the shift of the latter (100 µs compared to 10 µs), so the unification of these two phe-

nomena seems unlikely.

However, Webster did not have access to time-domain analysis, or a sophisticated model of

basilar membrane movement and hair cell response. To study his hypothesis further, a laterali-

sation task and a detection task are simulated via the model. The lateralisation task is the

detection of the minimum audible angle. This is measured in [Mills, 1958] as equating to an

ITD of 11µs at a frequency of 1 kHz. The detection task is the detection of a 1 kHz tone in the

presence of broadband noise. The measurement of this phenomenon is described in the previ-

ous chapter. The data for subject 2, and a target angle of 30° is used here.
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The results of processing the threshold stimuli for these two tasks through the auditory model

are shown in Figure 7.14. For the lateralisation task, the calculated ITD is shown for a real ITD

of 0 µs and 11 µs. For the detection task, the calculated ITD is shown for the masker only, and

the masker plus target. Thus, the difference in calculated ITD due to the just noticable differ-

ence in these two tasks can be calculated.

Two things are apparent: firstly, the disparity between the two difference signals is not as large

as suggested by Webster. ITD0 = 16.6, ITD11 =16.7; masker only = 16.6; masker plud tar-

get = 16.1. Hence the difference due to the masker is five times larger than that due to the ITD.

 

 

Figure 7.14: Internal signals at threshold for ITD task and masking task

(a) ITD=0; (b) ITD=11 µs; (c) masker only; (d) masker plus target
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Secondly, the larger difference occurs over a shorter period of time: for the noise masking tone

stimulus, the difference is only apparent near the start of the stimulus. Hence, integration of the

difference signal may bring the two results into line.

Unfortunately, an integration time constant of around 500 ms is required to harmonise the two

experiments, and such a large time constant will impair the performance of the model in many

other tasks. However, a time constant of 100 ms will set the ITD threshold at 22 µs, and a time

constant of 200 ms will reduce it to 18 µs. When the experimental error, and variance between

individual subjects is considered, the difference between this value, and the experimental value

of 11 µs does not seem so large. It is much closer than Webster’s own value of 100 µs, and

suggests that there may be a significant degree of truth in his hypothesis.

Most importantly, the difference between an 11 µs ITD threshold and an 18 µs ITD threshold

is small in the intended use of this model. It represents a lateralisation accuracy error of one

half of one degree. Considering no other time-domain model has successfully unified these two

tasks, this is a considerable achievement. For this reason, a single difference detector will be

use to detect changes in lateralisation and the presence of binaurally unmasked stimuli.

The difference detector simply subtracts one ITD estimate from the other, and multiplies the

difference by the confidence values. The resulting signal is integrated using a 100 µs time

constant. A binaural difference is perceived whenever this integrated value is larger than 0.3.

7.4.9 Directional accumulators

Thus, the model is calibrated to detect any just noticeable change in the location of a sound

source. This change will not be detected by the monophonic model, but will be audible to a

human listener. Where such a change occurs, it is visible on the binaural difference surface,

pin-pointed in both time and frequency.

This accurate information is useful for identifying and solving problems in audio codecs.

However, it would be useful to generate an indication of the overall effect of the codec upon

the “stereo image”. Such information, if it can be reliably calculated, would also be useful in

other areas of audio quality assessment. The model should detect changes in the stereo image,

such as a decrease (or increase) in the width of the stereo sound image, or a general shift of the

image to the left or to the right.
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Previous models (e.g. [Macpherson, 1991] and [Theiss and Hawksford, 1999]) can detect these

phenomena, but only for a small class of artificial signals (e.g. an impulse stimulus, or white

noise). These models are not suitable for assessing the stereo image degradation due to an

audio codec, because the codec will perform differently with the artificial test signals com-

pared to real music signals. In order to judge the effect of an audio codec upon a music signal,

the model must reliably detected changes in the sound stage of such a signal.

The present binaural model can carry out this task. The sign of the binaural difference repre-

sents the direction in which the perceived source location has moved, thus any leftwards or

rightwards shift in the stereo image can be detected in this way.

A running count is kept of the direction of movement, as judged before the integration of the

difference signal. Thus, to compare the stereo image of two signals, the oversampled peak

position (Section 7.4.7) should be compared on a sample by sample, and band by band basis.

For every leftwards shift of the peak, the “left” counter is incremented. For every rightwards

shift of the peak, the “right” counter is incremented. This will yield an indication of any overall

shift in the image position.

For every shift of the peak towards the centre location, the “in” counter is incremented. Fi-

nally, for every shift of the peak away from the centre, the “out” counter is incremented. These

final two measurements will determine if the width of the stereo image has been narrowed, or

if the central image has been dispersed. These are useful measurements, because the stereo

image often collapses toward the centre when intensity stereo coding is used, even though the

monophonic signal energy is maintained.

Note that, even if a sound source moves rightwards, some “leftwards” movement will be de-

tected, due to the nature of correlation-like processes (the EEVM) upon real-world periodic

signals. However, the dominant movement should still be rightwards, and it is likely that the

auditory system uses the dominant cue to judge source direction and movement, having learnt

to ignore the minority of signals pointing in the opposite direction. If there is no dominant

directional cue, then this indicates that a human listener would be unable to judge the true

direction of source movement. This sometimes occurs when auditioning a continuous, high

frequency pure tone stimulus in a reverberant environment, and it is appropriate if the model is

also confused by such stimuli.
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In summary, the binaural difference surface will indicate the time and frequency of any audible

difference, and the value of the directional accumulators left, right, in, and out, will indicate

any general change in the perceived sound stage. The use of these variables in the assessment

of a real music signal is demonstrated in Chapter 8.

7.5 Conclusion

In this chapter, existing models of binaural interaction have been reviewed, and a novel time-

domain binaural model has been developed. The model has been calibrated with measured

data, and, using Webster’s hypothesis, is shown to correctly predict human performance in

free-field masking experiments and horizontal-plane localisation discrimination tasks. Finally,

directional accumulators have been defined which allow the model to judge overall changes in

the stereophonic sound stage.
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8 

Audio quality assessment

8.1 Overview

In this chapter, the inputs and outputs of the auditory model are discussed, and two codec

assessments are performed. The model inputs consist of two “ear signals”. Three methods of

generating these ear signals are discussed. The model outputs consist of three time-varying

frequency dependent difference signals: left, right, and binaural. Methods of processing these

difference signals to reflect human perception are described. Two codec assessment tests are

performed via the model, and the perception of human listeners is compared with the model’s

predictions. Finally, the change in the stereophonic sound stage of a real music signal is as-

sessed by the binaural model.

8.2 Generating ear signals

The input to the monophonic model is passed through an HRTF filter and a middle ear filter, as

described in Chapter 5. These filters simulate the auditory pathway from the free field to the

cochlea. This simple approach is only suitable for a single monophonic source, located at the

angular position matching the HRTF measurement. In order to simulate a listener auditioning a

multi-channel audio system in a real listening room, a more sophisticated transformation is

required.

Three transformation methods generate ear signals compatible with the binaural model. Each

has its own advantages and disadvantages, which are discussed in the following sections.
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8.2.1 Anechoic HRTF crosstalk processing

Consider the typical stereo listening arrange-

ment illustrated in Figure 8.1. Two

loudspeakers are placed in front of the listener,

at ±30°. The direct sound pathways from each

speaker to each ear are shown. All effects of

the listening room are neglected.

Due to the (almost) symmetrical nature of the

human head, the pathway from the left speaker

to the left ear is identical to that from the right

speaker to the right ear. Conversely, the path-

way from the left speaker to the right ear is

identical to that from the right speaker to the

left ear. Thus, it can be shown that only two

monophonic HRTF measurements are required to simulate this listening situation; one meas-

ured at 30° relative to due front, and the other measured at 330° (or –30°, depending on the

nomenclature). Both measurements are taken at the entrance to the same ear for a source at the

respective angular positions. If the signals emanating from the speakers are SL and SR, then the

signals reaching each ear, EL and ER are:

33030 HSHSE RLL ⊗+⊗= (8-1)

33030 HSHSE LRR ⊗+⊗= (8-2)

where H30 is the 30° HRTF impulse response, H330 is the 330° HRTF impulse response, and ⊗

denotes convolution.

This transformation can be extended for use in other speaker layouts. The approach is used in

the calibration of the binaural model in Chapter 7, to simulate the ear signals from the spatial

masking experiments described in Chapter 6. Appropriate HRTFs are employed for each

speaker position. This transformation is ideal for this specific case, since the listening envi-

ronment is anechoic. It is also appropriate wherever a room independent measurement is

required.

Figure 8.1: Typical stereo layout, showing

paths from both speakers to both ears
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This approach can be improved by including the impulse response of the loudspeaker within

the calculation. The above equations assume an ideal speaker, where the output equals the

input. The response of the speaker can be included by redefining SL and SR thus:

TxS LL ⊗= (8-3)

TxS RR ⊗= (8-4)

where xL and xR are the left and right channels of the input signal, and T is the transfer function

of the loudspeakers. Separate left and right speaker transfer functions can be included if the

speakers are not identical.

This approach is appropriate where the listening room is anechoic, or the properties and di-

mensions of the listening room are not known. However, if the model is required to assess the

perceived audio quality of signals replayed within a real listening room, then a more accurate

transformation is possible.

8.2.2 Measured speaker/room response

It is possible to account for the response of the speakers, listening room, and listener HRTFs

via a single pair of measurements. This requires the use of a dummy head containing micro-

phone capsules within the ear canals, or a real human listener with miniature microphones

inserted into their ear canals. The dummy head or real listener is placed at the normal listening

location, and the impulse response from each speaker to each microphone capsule is deter-

mined.

The impulse responses should be measured in such a way that the entire room response is

captured. This is the opposite of normal practice when measuring speaker responses, where the

impulse response is windowed to remove all indirect sound. Capturing the entire room re-

sponse represents a challenge, due to both the duration of the response, and the poor signal to

noise ratio as the response decays. A typical maximum length sequence will repeat before the

impulse response has decayed sufficiently, so it will be necessary to use a longer MLS, or to

use a click stimulus, averaged over many measurements. This is possible with a dummy head,

but the slight head movements of a human listener may render the averaging process useless,

unless a head clamp is employed.
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After the impulse responses have been captured, the ear signals for any audio stimulus re-

played over the speakers can be generated by convolution. This technique is implemented in

[Theiss, 1999].

The disadvantage of this method is that only measured speaker/room/listener combinations can

be simulated. If the desired room or speaker is unavailable, then it is impossible to carry out a

measurement. Further, in order to change the simulated placement of the speakers within the

room, it is necessary to take further impulse measurements. If the exact parameters of the

listening test are known, then this method is ideal. However, if the choice of speaker, or loca-

tion of speaker and listener are variable, then this method may be too time consuming and

cumbersome.

8.2.3 Simulated room response

Where the parameters of the listening environment are variable, or where the listening envi-

ronment is hypothetical, simulation of the sound field within the listening room represents a

useful alternative to direct measurement. The response of the speaker, room, and listener are

still required, but each may be specified, measured, or simulated individually, and then com-

bined as appropriate. The path of the audio signal from the speakers to the listener’s ear may

be calculated by the following method.

The response of the speaker may be measured or simulated. The speaker is usually approxi-

mated as a point source, but a more accurate simulation would include the directional

characteristic of the speaker. This property can be quantified by measuring the on and off axis

response for a variety of frequencies.

As the sound wave propagates within the listening room, it will be absorbed by the air. Higher

frequencies are absorbed most rapidly, whilst frequencies below 1 kHz are not appreciably

attenuated over the distances encountered within normal listening environments. A 1 kHz tone,

propagating through air at room temperature is attenuated by 3 dB over a distance of 100 m.

The attenuation of other frequencies over any distance can be calculated from the atmospheric

absorption coefficients in [Putland, 1994]. This attenuation is in addition to the inverse square

law, which states that the intensity of sound from any point source reduces as the square of the

distance from the source.
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The boundaries of the listening room will reflect the audio signal. The image model [Allen and

Berkley (1979)] uses the laws of geometric optics to model the sound paths within a shoebox

shaped room. Thus, the reflections of the room boundary effectively create an image as far

behind the boundary as the source is in front, as illustrated in Figure 8.2 [Rimell, 1996]. An

extension of the theory [Borish (1984)] facilitates the calculation of the sound paths in a hy-

pothetical room of any shape.

The image model assumes that the reflective surfaces in a room transform only the amplitude

and direction of the signal, but not its spectrum. This is substantially untrue, and a frequency

dependent extension of the model described in [Rimell (1996)] is more accurate. This model

accounts for the different absorption properties of glass, plaster, curtains and other materials

found within the listening environment.

Finally, the direct and reflected sound waves reach the listener. The delay and frequency de-

pendent amplitude of the sound waves are accounted for by the above models, as are the angles

of incidence. An appropriate pair of HRTF impulse responses are convolved with each in-

coming sound wave, and the signals for each ear are summed. Thus, the impulse responses that

were measured directly in the previous section may be calculated for any arbitrary listening

environment using this model.

Figure 8.2: Simulation of room reflections using the image model
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The disadvantage of this response is that, theoretically, all possible HRTFs must be measured,

and made available for the final convolution, since reflected sound can come from any direc-

tion. In practice, a limited set of HRTF measurements is used. Each incident sound wave is

processed by the closest measured HRTF response, or an interpolated HRTF generated from

the three nearest responses1. The error between the desired and measured HRTF is insignificant

if a sufficiently dense set of HRTF measurements is employed. This technique is implemented

in [Rimell, 1996].

8.3 Interpreting the difference surfaces

The outputs of the binaural model are three time-varying frequency dependent difference

surfaces. The monophonic left and right difference surfaces indicate noticeable changes in the

sound which are detectable at each ear in isolation. The binaural difference surface indicates

noticeable changes in the sound which are detectable due to comparison of the signals at each

ear. Both monophonic and binaural signals include information about additional signal compo-

nents (e.g. coding noise or distortion) and subtractive differences (e.g. drop outs). The binaural

signal also contains information about any change in the perceived location of a source.

Any value below 0.1 represents an inaudible difference; a value of 0.1 represents a “just no-

ticeable difference”, and values above this are increasingly audible. The difference surfaces are

very useful in that they pinpoint audible problems in both time and frequency. However, the

surfaces are too complex to yield a simple indication of overall perceived sound quality.

There is another layer of processing within the human auditory system, the mechanisms of

which are unknown at present. This processing, which is probably a conscious process, re-

ceives all the detectable differences between the two signals as an input, and calculates a single

value to quantify the extent to which these differences are “objectionable” or “annoying”. If

the reader has ever experienced a subjective test (or for that matter, if the reader has ever been

required to give an opinion upon anything) they will be aware that the process is not mecha-

                                                  

1 Some researchers have used direct interpolation of the raw impulse responses. This is to be discouraged,

since differing time delays are confused, rather than interpolated, by this technique. Interpolation of mini-

mum phase HRTFs is more successful, provided the correct sub-sample delays are added to the resulting

impulse response.
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nistic, or automatic. Where a numerical value must be assigned to a subjective property, there

are elements of instinct, judgement, thought, and learned response.

In the PEAQ model [Theide et al, 2000], a

neural network is employed to transform

several measures of distortion into a single

value. About half of these measures of distor-

tion are drawn from linear measurements that

are not considered by the present model, while

the other half arise from an auditory model

comparable to the monophonic model of

Chapter 5. The neural net is trained using a

large corpus of subjective test results, and

achieves a respectable level of accuracy, as

shown in Figure 8.3. It is apparent that even

this internationally recognised perceptual

measurement system has trouble predicting the

human perception of poor quality audio sam-

ples. This is shown by the spread of values

below –3.0, where the correlation between

predicted and actual diffgrade breaks down.

It is not possible to employ a neural network with the present model at this time, because

insufficient training data is available2. For this reason, a more direct approach is sought, which

can be demonstrated to yield promising results without extensive calibration. Such an approach

is described in the next section.

                                                  

2 In order to gather suitable calibration data, a subjective test was planned, and audio extracts were prepared.

However, the BS.1116 recommendations [ITU-R BS.1116, 1997] suggest that inexperienced and untrained

listeners are undesirable. A previous test [Goh, 2000] showed that inexperienced listeners can generate

random results. The approximate time scale required to train a listener, and perform a complete set of tests is

2-4 days. It was not possible to find listeners who were willing to commit this amount of time.

Figure 8.3: Correlation between “objective

diffgrade” calculated by PEAQ, and

“subjective diffgrade” judge by human

listeners
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8.3.1 Error Entropy

If the total area under the absolute audible difference surface is summed, this gives an indica-

tion of the magnitude of the audible difference over the entire audio extract. The main problem

with this approach is that a very loud difference of short duration will have the same contribu-

tion to the total difference as a very quiet difference that persists throughout the extract. The

quiet difference may be barely noticeable, whereas the loud difference may be so annoying that

the listener’s enjoyment is destroyed. It is inappropriate for both these coding errors to yield a

similar difference score.

Another issue when summing the audible difference surface is that 5 seconds of perfect quality

audio will not cancel (or even halve the effect of) 5 seconds of degraded audio. This indicates

that any mean difference measure will be misleading.

It is suggested in [Hollier et al, 1994] and [Hollier et al, 1995] that a measure of the distribu-

tion of the errors over the audible difference surface can be used to give an indication of

perceived quality degradation. This measure is taken from video coding, where the entropy (or

activity) within a video frame is used to predict the bitrate required to code that frame. For the

audible difference, a low entropy value indicates that the difference is concentrated into small

regions, and a high entropy value indicates that the difference is spread evenly throughout the

audible difference surface. If the audible difference surface is e(i,j), then the audible difference

area is given by:
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Three possible uses of the entropy measure are given in [Hollier, 1994], though only one is

demonstrated. In this solution, the error area and the error entropy are used to calculate a sub-

jective score, thus:

ea EcEbaY .)log(. ++= (8-8)

where the constants a, b, and c are chosen to match any desired subjective scale. The chosen

scale is usually the mean opinion score, or diffgrade (discussed in Chapter 2). The examples in

[Hollier, 1994] suggest that b should be approximately 1/10 the value of c.

8.4 Audio Quality Assessment

In Chapter 4, the results of published subjective listening tests were compared against the

predictions of the Johnston model. Several inconsistencies between human perception and the

predictions of the Johnston model were discovered. However, the comparison was thwarted

because the codecs employed in the published listening tests were different from the codecs

used to generate the samples tested by the Johnston model.

A fair performance comparison is only possible if the model “hears” the same audio as the

human listeners. To achieve this goal, the exact same audio extracts must be used in both the

subjective test and the models assessment.3 It is difficult to gain access to the audio extracts

used in official listening tests, and a full-scale subjective test was not carried out as part of the

present work for the reasons given previously. However, the author has taken part in two

subjective tests carried out over the internet. This has the disadvantage that the test conditions

are difficult to control, but the advantage that many interested and experienced volunteers are

available to take part. As a participant, the audio extracts and full results are available to the

                                                  

3 If the same CD track and same audio codecs are used for both tests, but the coded audio extracts are gener-

ated independently, then a fair comparison may not be possible. This is due to the inaccuracies of transferring

digital audio from audio CD to hard disk. Though the numerical sample values can be transferred exactly, an

indeterminate offset of several samples is usually introduced at the start of any track. Where an audio codec

operates upon discrete blocks of data, a temporal offset will move the block boundaries, and may affect the

quality of the coded audio. If the original audio is exchanged as a data file on a CD-ROM format disc, this

problem is avoided, since the start of the file is known exactly.
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author. The two tests focused on high quality (200 kbs and over) and medium quality

(128 kbps) audio coding, as follows.

The audio extract employed in the high quality listening test consists of a solo hi-hat. The

sharp transients of this signal make it very difficult to encode, especially by transform codecs

such as MPEG-1 layer III, which temporally smear transient signals. The subjective results of

this test are shown in Figure 8.4. For further details, see Appendix H. This extract is particu-

larly testing for the model, because a previous version of the monophonic detector (Appendix

J) performed poorly at the onset of sounds, where the temporal smearing is greatest.

The audio extract in the medium quality listening test is less demanding of the audio codecs.

The subjective results of this test are shown in Figure 8.5. For further details, see Appendix I.

Predicting the results of this test is a difficult task for the model, because different audio for-

mats add noise in different ways, using different psychoacoustic models. It is a challenge for

the model to predict the audibility of six different types of noise in a manner that matches

human perception.

Figure 8.4 and Figure 8.5 can be found on the next page.
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Figure 8.4: Subjective results of the high quality audio test
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Figure 8.5: Subjective results of the medium quality audio test
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Figure 8.6: Audible difference surfaces for extracts MPC (top left), DM-X (top right) and

CBR192 (main). MPC is the only transparent extract on test.

For an explanation, please see Section  8.4.1 on the next page.
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8.4.1 High Quality Audio Test

Each audio sample from this test is processed via the model. Difference surfaces representing

the audible difference between each coded extract and the original are generated. Three of the

difference surfaces are illustrated in Figure 8.6. Each audible difference surface is processed as

described in Section 8.3.1. The constants a, b, and c in equation (8-7) are chosen to match the

model output to the scores from the subjective test. This is achieved by setting b = c / 10 and

performing a linear regression. The resulting value represents the model’s prediction of the

subjective quality of the codec.

The relationship between the model predictions and the results of the subjective test is shown

in Figure 8.7. Judging by this graph, it is possible that the correlation is not linear. However,

the range of data in this high quality test is so small that the apparent curvature may be due to

random differences. For a linear fit, R2 = 0.8. If the worst data point is removed, R2 = 0.9. This

indicates that the model is predicting the human perception of audio quality within this test to a

high degree of accuracy.
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Figure 8.7: Model predictions plotted against subjective scores for high quality audio

test
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The success of the model in predicting human perception of this transient stimulus demon-

strates that the problems encountered in the previous monophonic difference detector

(Appendix J) have been solved.

8.4.2 Medium Quality Audio Test

The same procedure was carried out as for the previous test. Unfortunately, this test revealed a

severe problem with the model. The present monophonic difference detector, which has been

shown to perform well in a series of psychoacoustic tests (Chapter 5) and in the assessment of

transient information (previous section), fails to correctly predict the perceived differences

within real music signals.

This failure was discovered too late to engineer a solution, though the reasons for the failure

and possible remedies are discussed in Section 8.5.

The previous version of the monophonic difference detector, described in Appendix J, is

known to be over sensitive at the onset of sounds. However, this detector has predicted human

perception with some success in previous tests (also in Appendix J). For this reason, the audio
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extracts from the medium quality audio test are compared via the old monophonic difference

detector, yielding the correlation shown in Figure 8.8. This detector integrates the difference,

thus a higher peak difference indicates poorer subjective quality. This negative correlation

between peak difference and subjective quality is visible in Figure 8.8.

A linear fit provides an R2 value of 0.6, which indicates that the model prediction and the

subjective score show a “moderate” strength of correlation. It would be misleading to state that

the model predicts human perception accurately, since the statistical analysis of the results in

Appendix I suggests that the scores of 4.12 and 4.31 (right hand points in the graph) are sig-

nificantly better than the others, whereas the model prediction does not show this.

However, the performance of the old monophonic difference detector is still promising. For

example, the original calibration (Appendix J) set the threshold of audibility at a value of 25

model units. A linear regression of the data from the medium quality audio test is shown in

Figure 8.8. The line of best fit intercepts the MOS value of 5.0 (transparent) at a value of 26.0

model units. This match is encouraging.

The new monophonic difference detector does not correctly predict human perception in this

task. The reasons for this failure and possible remedies are discussed in the next section.

8.5 Difference detection error

Two separate monophonic difference detectors have been developed for use with the present

model. The first is described in [Robinson and Hawksford, 1999] and Appendix J. The second

is described in Chapter 5. The first detector correctly matched human perception in four psy-

choacoustic tests, and achieved some success in predicting the perceived quality of audio

signals. However, the detector is overly sensitive to the onset of signals. This is a severe prob-

lem, because any (inaudible) softening or smearing at the onset of a sound generates a large

calculated perceived difference. This restricts the applicability of this model to codec assess-

ment, since some audio codecs smear the sound in the temporal domain by design (for

example, WMA, as described in Appendix J).

8.5.1 Development of the new detector

To solve this problem, a new detector was developed, as described in Chapter 5. This detector

is tuned to match human performance in seven psychoacoustic tests, including pre-masking.
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The adaptation model [Dau et al, 1996a] that precedes the monophonic difference detection

circuit responds vigorously at the onset of sounds. However, this feature in itself is not a fault,

since the inner hair cells are known to respond in this manner. Thus, it is apparent that some of

the information from the inner hair cells must be lost in internal processing. This is accounted

for by internal perceptual noise.

During the development of the difference detector, it became apparent that no amount of inter-

nal noise could account for the measured pre-masking response, if the output of the adaptation

model was correct. It was considered that the adaptation circuit might be in error. The adapta-

tion model is a signal processing approximation to the hair cell response. However, accurate

simulations of hair cell response (e.g. [Meddis, 1986a]) show the same vigorous activity at the

onset of sounds. The design principle of the model is to match the function of the human

physiology as closely as possible, and any reasonable reading of current physiological knowl-

edge suggests that the signal at this point in the auditory system contains vigorous activity at

the onset of sounds. Hence, the adaptation circuit was maintained, and another solution sought.

Internal amplitude noise, or internal uncertainty within the amplitude domain, could not ac-

count for pre-masking. However, internal uncertainty within the temporal domain could

account for pre-masking. Further, a form of internal time-domain noise (jitter) could account

for the difference in internal difference between tone masking noise and noise masking tone

thresholds. This hypothesis is discussed in Chapter 5. Briefly, the “just detectable” internal

difference is proportional to the time-domain variation of the hair cell firing probability. This

was accounted for in the old monophonic detector by a variance measure, but it can be ac-

counted for equally well by internal time-domain noise.

Time domain noise is physiologically possible. The signals upon the nerves are represented by

pulse-density modulation, so time-domain noise is more likely than amplitude domain noise.

The thresholds of three measured masking phenomena (temporal pre-masking, temporal post-

masking, and noise masking tone) are accounted for by time domain noise. For these reasons,

the mechanism is incorporated into the monophonic difference detector described in Chapter 5.

This difference detector matches human performance in seven psychoacoustic tests, and pre-

dicts human performance in an audio quality assessment task that includes a transient stimulus.

Unfortunately, this detector fails in the audio quality assessment of a typical music signal. The

variation within the hair cell firing probability is such that temporal jitter can be used to ac-
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count for almost any difference between two signals. In other words, the jitter causes the model

to be deaf to many differences between two music signals.

8.5.2 Possible solution

This problem can be solved by applying some of the knowledge gained during the develop-

ment of the binaural model. The solution has not been tested, because it involves calibration of

a new monophonic detector, which is not possible in the remaining time-scale of the project.

However, the root of the problem does not lie within the monophonic detector, but in the

module which directly precedes it.

The adaptation model of [Dau et al, 1996a] simulates temporal post-masking well, due to the

hair cell response, but also due to the final 20 ms smoothing filter. This smoothing filter is an

integral part of the model, and it probably simulates the monophonic temporal window, though

this is not stated explicitly. There has been constant debate over recent years (e.g. [Oxenham,

2001]) as to whether temporal masking is due to the response of the hair cells, or a higher level

temporal smearing process. [Dau et al, 1996a] avoid this debate by including the smoothing

filter without explanation. Dau states that temporal pre-masking is due mainly to the Basilar

Membrane filter response. It is shown in [Dau et al, 1996b] that the adaptation model underes-

timates temporal pre-masking thresholds, and this has been confirmed in the present work. Dau

states that this may be due in part to the extremely high sensitivity of the adaptation model at

the onset of signals, and this too has been confirmed by the present work. Finally, Dau states

that this may be solved by limiting the strong onset response, but makes no suggestions as to

how this may be achieved without changing the performance of the model in all other scenar-

ios.

The jitter proposed in Chapter 5 solves this problem for simple psychoacoustic experiments,

but not for audio quality assessment. However, the problem may be solved in an entirely dif-

ferent manner. Rather than ascribing temporal masking to the hair cells, let us assume that the

hair cells only account for the non-linear change in temporal masking threshold with stimulus

intensity and duration. Thus, the actual mechanism responsible for temporal masking must lie

elsewhere. If [Oxenham, 2001] is correct, then there may be an internal temporal integration

window. However, the experience gained in the development of the binaural model suggests

that temporal windows within the auditory system are not single sided integrators, but double

sided windows. If this is true for the monophonic temporal window, then the integrator at the
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output of the adaptation model from [Dau et al, 1996a] is inappropriate. Rather, the output of

the 5-stage AGC mechanism should be smoothed by a double sided window. If this window is

chosen to be asymmetric (c.f. the binaural temporal integration window), then it would cor-

rectly account for pre- and post-masking.

With this approach, no internal jitter is required, so the pre-masking can be accounted for

without compromising the sensitivity of the model to differences within real music signals.

Reverse time domain filtering may be employed in order to implement this temporal window,

as is used within the binaural processor of Chapter 7.

8.5.3 Discussion

It is disappointing that the model cannot assess the perceived audio quality of a real music

extract using the monophonic detector described in Chapter 5. To overcome this shortcoming,

it is necessary to switch to the older detector, which offers reasonable results.

However, the “fault” lies in a section of the model which was developed elsewhere. A novel

solution has been suggested which arises from another part of the present work, and is sup-

ported up by the latest research [Oxenham, 2001].

Finally, it is worth noting that, just as the binaural temporal window may be a simplification of

a more complex process, so the monophonic temporal integration may also approximate the

underlying mechanism. This possibility has not been probed at the present time. It is reminis-

cent of the knowledge that was available at the turn of the last century about the nature of light.

Some researchers argued that light must be a wave, others that light must be a particle. Without

knowing the true answer, it was possible to explain the behaviour of light in most circum-

stances simply by assuming that it was a wave. Likewise, though there may or may not be

simple monophonic and binaural temporal integration windows within the auditory system,

assuming that such windows exist accounts for the vast majority of current knowledge, and

will lead to a model that is capable of predicting human perception in a wide variety of tasks.

The task of testing this hypothesis with the assessment of coded audio falls under the heading

of further work.
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8.6 Binaural quality assessment

The binaural accuracy of an audio system will have a relatively small effect on the overall

perceived quality. This assumption will fail if the perceived location of the source is changed

dramatically, but such a dramatic change will also register as a monophonic difference. Hence,

the main application of the binaural difference measure is in detecting small problems in oth-

erwise transparently coded audio extracts.

As described in Chapter 7, the binaural model can judge the general effect of an audio codec

upon the stereo image. This property will be demonstrated.

8.6.1 Inter channel time delay

Two mechanisms may cause the stereo image to be shifted left or right. In the next section,

inter channel amplitude difference is investigated. In this section, the effects of inter channel

time delay are discussed.

Where a positive time delay is introduced into one of the stereo channels, the stereo image will

shift towards the opposite channel. This also occurs for a person listening off-axis, such that

the signal from one loudspeaker reaches them before that from the other. In this situation, the

stereo image is “pulled towards” the nearer loudspeaker.

In order to test the binaural model’s ability to detect such a change, integer sample time delays

are added to one channel of a digital stereo recording. The signal consists of a live, acoustic

recording that has a wide sound stage and an expansive acoustic. The backing instruments

sound distant and diffuse, while the lead solo woodwind instrument is located just left of cen-

tre. This is exactly the kind of signal which previous models have been unable to localise, due

to its highly tonal nature, and the lack of abrupt signal onsets.
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The original signal, and copies of the signal with 2, 4, 6, and 8 inter-channel delays are proc-

essed via the model. The anechoic HRTF method (Section 8.2.1) is used to generate ear signal

from the channels. The monophonic model is used to generate the hair cell input to the binaural

model, which in turn calculates the oversampled peak. The position of the oversampled peak

for each time/frequency point of each signal is compared with the corresponding

time/frequency point of the original signal. The directional accumulator values are computed

for each pair. The counts of “leftwards” and “rightwards” changes in lateralisation are shown

in Figure 8.9 for each version of the signal.

It can be seen that the relative number of leftwards and rightwards changes correctly predict

the direction of the image shift for all the test signals, and that the number of “leftwards”

changes increases as the inter-channel delay increases.
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8.6.2 Inter channel intensity difference

In most modern studio recordings, the location of the sound source is determined by the inter

channel intensity difference. Any change in the overall level of one of the channels will simi-

larly shift the image location in one direction. This phenomenon is not directly incorporated

into the binaural model, which only processes interaural time delay. However, when a signal

containing an inter channel intensity difference is replayed over stereo speakers, the interaction

of the signals from both speakers at each ear give rise to interaural time differences. The theory

behind this statement can be found in [Bauer, 1961] and [Bernfield, 1973]. The result is that

processing a signal containing an interaural intensity difference via the anechoic HRTF method

generates ear signals that contain the correct interaural time delay.

0 5000 10000 15000 20000

number of lateralisation changes detected

 +1.0

 +0.5

  0.0

 -0.5

 -1.0

le
ft

 c
h

an
n

el
 a

tt
en

u
at

io
n

 / 
d

B

Leftwards Rightwards

Figure 8.10: Qualitative prediction of image shift as a function of left channel attenuation



AUDIO QUALITY ASSESSMENT

207

This conversion to ILD is expected from theory, but will the model detect it in practice? To

test this, one channel of a stereo music recording is attenuated by various amounts. 0.5 dB

inter-channel intensity difference is enough to cause a detectable change in source location4.

The musical extract used in the previous test is also used here. The level changes applied to the

right-hand channel are 0 dB, -0.5 dB, and –1.0 dB. The test methodology is identical to that

used in the previous section. The number of leftwards and rightwards lateralisation shifts for

each stimulus are shown in Figure 8.10, which can be found on the previous page.

Yet again, the larger directional accumulator variable for each signal indicates the perceived

change in location. Also, the value of the variable increases as the amplitude difference is

increased.

The change in location detected in this test appears more significant than that detected in the

previous section. This matches human perception, where the change in location due to an inter

channel intensity difference reproduced over loudspeakers is clearer than that generated by an

inter channel time delay.

Thus, the model correctly predicts perceived changes in overall image location for a real music

signal. It may be possible to calibrate the qualitative values to some quantitative indication of

the change in perceived location, though this has not been attempted. Further study is required

to judge the stability of the qualitative variables over different types of signal.

8.6.3 Stereo image width

Some audio codecs change the perceived width of the stereo image. Quantifying the perceived

width of an image is a difficult task for a human listener. It is easy to hear differences, but

quantifying those differences is more challenging.

                                                  

4 The minimum detectable monophonic change in level is 1 dB. This is yet another phenomenon that is not

detected by the monophonic model, but is audible to a human listener.
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To test the ability of the model to judge a change in image width, a stereo signal with ex-

tremely wide separation is narrowed by mixing the two channels together slightly. The signal

is a twin-track recording from the 1960s which has half the instruments on one channel, the

other half on the other, and only ambience in the centre. Several copies of this signal are gen-

erated with the stereo channel mixed into each other to varying degrees, and all signals are

processed and compared as above. In this test, the qualitative variables “in” and “out” are

compared in Figure 8.11.

This is a very difficult test for an auditory model. In order to judge that the image has collapsed

inwards, it must first have detected that there are sound sources at two spatially separated

positions, and then detected that both sources move inwards. However, the qualitative vari-

ables correctly predict the perceived narrowing of the stereo image as the two channels are

mixed.
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8.7 Conclusion

Three methods for generating suitable “ear signals” for the model have been described, and the

simplest of these was used throughout this chapter with some success. A statistical analysis has

been introduced that aims to predict the perception of a human listener from the complex time

varying outputs of the model. Two codec assessment tests were performed via the model, and

assessed using this analysis. The model correctly predicted human performance in one test, but

failed in the other. The reasons for this failure were determined, and a possible solution was

proposed. Finally, the binaural model was used to assess the change in the stereophonic sound

stage of a real music signal. The model was shown to accurately predict human perception of

interaural time and level differences, and to correctly detect a change in the width of the stereo

image.
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9 

Conclusion

9.1 Overview

In this chapter, the present work is reviewed. The performance of the model is critically as-

sessed, and areas for further work are outlined. Finally, the original work within this thesis is

listed.

In Chapter 2, the principles of psychoacoustic-based audio codecs were introduced, and tradi-

tional objective audio quality measurements were demonstrated to be inappropriate for the

quality assessment of coded audio. The expensive and time-consuming nature of subjective

tests necessitates the development of objective perceptual measurements, such as the one

described in this thesis.

In Chapter 3, the processes within the human auditory system were described in detail, and

sources of measurable performance limits were identified.

In Chapter 4, existing models of human hearing were critically assessed. The three areas where

existing models are inadequate were identified as temporal masking, spatial masking, and

binaural hearing.

In Chapter 5, a time-domain monophonic auditory model was developed, based upon the

processing present within the human auditory system. This model was calibrated to match

human performance in a wide range of psychoacoustic tests.
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In Chapter 6, the procedures and results of an investigation into spatial masking were de-

scribed.

In Chapter 7, a time-domain binaural auditory model was developed. This model used the

monophonic model as a pre-processor, and together the two models form a combined predictor

of human perception. The model was shown to predict binaural masking and localisation data,

which suggested that both phenomena were due to the same internal process. The model was

calibrated to match human performance using data from the spatial masking experiment.

In Chapter 8, the model was used for audio quality assessment. The monophonic model was

found to correctly predict the human perception of some coded audio extracts, but not all.

Solutions to this problem were suggested. The binaural model was shown to correctly predict

human perception of spatial artefacts.

9.2 Critical assessment

The monophonic and binaural sections of the model have met with differing levels of success.

Each section will be discussed in turn.

9.2.1 Monophonic model

The performance of the monophonic model is disappointing. Possible solutions to the explicit

problems demonstrated in Chapter 8 were described therein. It should be noted that the solu-

tion to the problem arises from the binaural work, and is supported by recently published

psychoacoustic research.

The decision was taken at the start of the project to develop a novel monophonic model based

upon the processing within the human auditory system. This approach is often used in models

designed to predict human performance in psychoacoustic experiments, but not in the field of

audio quality assessment. Had the author chosen to implement an existing monophonic quality

assessment model, then its performance would have been guaranteed. However, by employing

a new technique in this field, several lessons were learned.

Firstly, the computational burden due to a complex processing model should not be underesti-

mated. Whilst increased complexity may be acceptable if it delivers a corresponding increase

in performance, the increases are not proportionate.



CONCLUSION

212

Secondly, the accurate simulation of the processes within the human auditory system may

impede the accurate prediction of human perception. This statement is superficially contradic-

tory, but it arises because our knowledge of the human auditory system is incomplete. It is

possible to generate an accurate representation of the signal at one point within the human

auditory system, but to have no knowledge of the subsequent processing. Hence, at the point

where this signal must be interpreted, present knowledge of the human auditory system ends.

A self-training neural network is one solution to this problem, but not transforming the audio

into this representation in the first place is another attractive solution.

Comparing the neural signals to detect the just audible difference between two stimuli is suc-

cessful. This was demonstrated in Chapter 5 by the performance of the monophonic model in

psychoacoustic tests. However, processing the neural signals in order to quantify a large per-

ceived difference is a more challenging task. One possible solution is to use the model

presented herein to determine if there is any difference between two audio signals, and to use a

conventional model of audio quality assessment to quantify that difference. This may yield

increased performance in the assessment of near transparent codecs. In truth, such a method

may add little to the prediction of diffgrades, but it may detect the small differences that

“audiophiles” claim to hear, which may not be audible within repetitive subjective tests due to

listener fatigue.

Thirdly, a system cannot perform more accurately than its weakest link. This was demonstrated

during the development of a perceptual loudness meter, based upon the monophonic model.

This loudness meter is used in the Replay Gain Proposal, reproduced in Appendix K. By com-

bining the processing of the monophonic model with the model of [Moore, 1997], a very

accurate prediction of instantaneous perceived loudness may be computed. However, for a real

music signal, the perceived loudness changes dynamically over time. The manner in which the

auditory system integrates instantaneous perceived loudness to yield an overall loudness meas-

ure is not well understood. [Zwicker, 1984] suggests that a high percentile value of the ordered

instantaneous loudness estimates may yield a good prediction of overall perceived loudness,

and this approach works well in practice. However, over the entire length of a typical piece of

music, this calculation makes the accuracy of the preceding processing redundant. This final

stage is so approximate that the overall performance is only slightly reduced if most of the

preceding processing is removed. This reduces the computational burden dramatically.
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A similar situation arises within the monophonic model. The adaptation circuit calculates the

response of the inner hair cells to a high degree of accuracy, and this signal can be used to

predict human performance within psychoacoustic experiments. However, the predictions of

the human perception of real music are less accurate. Hence, if this is the intended use of the

model, it may be appropriate to use a simpler hair cell simulation in order to increase compu-

tational efficiency, without compromising performance. If this suggestion is added to the

previous one, it is possible that removing the hair cell simulation would actually improve the

model’s performance in audio quality assessment, although its performance in psychoacoustic

tests would be degraded.

Finally, though the monophonic model does not perform as well as intended in audio quality

assessment tasks, it does form a vital pre-processor for the binaural model. The accuracy of the

monophonic model in simulating the auditory nerve signal is crucial to the excellent perform-

ance of the binaural model. The success of the binaural model demonstrates that, in some

respects, the monophonic model is performing acceptably.

9.2.2 Binaural model

The performance of the binaural model is very encouraging. The model successfully predicts

the perceived lateralisation of a sound source in a time-domain manner. Further, the model

correctly detects just noticeable changes in source location, and just detectable binaurally

unmasked sounds, using the same detection mechanism.

Previous models either did not operate in the time domain, or were only applicable to a small

number of artificial stimuli. The model described in this thesis can accurately judge the per-

ceived spatial qualities of real music stimuli, as demonstrated in Chapter 8.

9.3 Further work

Appropriate solutions to the problems encountered in the monophonic model were discussed in

Chapter 8, and these may be implemented to improve the functionality of this part of the

model.
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The binaural model can detect and judge a change in source location. This is all that is required

in order to detect any degradation in the spatial properties of an audio signal due to an audio

codec. However, the binaural model could form the basis of a localisation model, which not

only detects changes in location, but can also predict the absolute location of a sound source.

The mapping of the lateralisation estimate into a perceived source angle is trivial, but two

further modifications are recommended in order to accurately predict the perceived location of

a sound source.

Firstly, the role of head movements in localisation is vital. [Theiss and Hawksford, 1999]

suggest that localisation estimates should be made for three positions of the head; facing

straight forward, and at ±5°. This is appropriate, even for a listener who is apparently motion-

less, since even small head movements yield important binaural clues. This was demonstrated

in Chapter 6. Forming a localisation judgement based upon the three head orientations will

remove much of the front/bank confusion that arises from “head clamped” listening.

Secondly, though the model operates well without an interaural intensity difference detector,

this quantity is important in determining the perceived location. It is suggested in [Brungart et

al, 1999] that comparison of the ITD and IID cues may yield a prediction of perceived source

distance. Thus, by combining head movement, ITD, and IID in an appropriate manner, the

model may predict the true 3-D location of the sound source, not just its angular bearing.

The mapping of ITD to perceived location must be frequency dependent. This will account for

the dominant components of the measured HRTF response. If a more accurate method of

processing the HRTF cues is required, then it is suggested that a neural network may be em-

ployed, as suggested in [Nandy and BenArie, 1996].

Finally, the binaural model’s directional accumulators give an indication of the overall change

in perceived source location, as demonstrated in Chapter 8. The relationship between source

movement and the values of the variables is somewhat signal dependent, but it would be inter-

esting to attempt to calibrate these variables to real world positions. Alternatively, it may be

possible to transform the directional accumulator values into a single MOS-type indicator of

perceived binaural impairment.
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9.4 Original work

To conclude, the original work within this thesis is as follows:

Chapter 5: The implementation of amplitude dependent filter bank.

The use of an accurate inner hair cell simulation within an audio quality as-

sessment model.

Chapter 6: The development of the psychoacoustic experimental tool audiotest.

The investigation into spatial masking.

Chapter 7: The entire binaural model, especially:

The use of an Element by Element Vector Multiplication as an approximation

to internal binaural processing.

The use of a double-sided exponential binaural temporal window.

The use of a time-reversed double IIR filter as an efficient implementation of

double sided exponential window.

The unification of detection and lateraisation in accordance with Webster’s

hypothesis.

Chapter 8: The ability of the binaural model to correctly perceive changes in the stereo

soundstage of real music signals.
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PSYCHOACOUSTIC MODELS
AND NON-LINEAR HUMAN
HEARING

This appendix contains an investigation of in-ear distortion, published by the author during the

present research.

In ear distortion is a special instance of in-ear generated sound. The production of extra signal

components within the ear may theoretically alter the perceived performance of psychoacous-

tic-based codecs. In this appendix, the loudest in-ear distortion product, known as the cubic

distortion tone, is investigated in detail. It is shown that this measurable in-ear distortion has

little impact upon the perceived quality of audio codecs.

The original reference for this paper is

Robinson, D. J. M., and Hawksford, M. O. J. (2000). “Psychoacoustic models and non-linear

human hearing.”

preprint 5228, presented at the 109th Convention of the Audio Engineering Society, Los

Angeles, September 2000.

The paper is reproduced here in its entirety.
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Abstract - Non-linearity in the human ear can cause audible distortion not present in the

original signal. Such distortion is generated within the ear by inter-modulation of a

spectral complex, itself containing possible masked components. When psychoacoustic

codecs remove these supposedly masked components, the in-ear-generated distortion is

also removed, and so our listening experience is modified.  In this paper, the in-ear dis-

tortion is quantified and a method suggested for predicting the in-ear distortion arising

from an audio signal.  The potential performance gains due to incorporating this knowl-

edge into an audio codec are assessed.

A.1 Introduction

Perceptual audio codecs aim to discard signal components that are inaudible to human listen-

ers. Typical  codecs (e.g. [ISO/IEC 11172-3, 1993]) calculate theoretical masking thresholds

from quasi-linear models of the human auditory system. It is assumed that any signal compo-

nents below the masking threshold may be disregarded, without causing any audible degrada-

tion of the signal. However, the ear is a non-linear device, and linear models of masking do not

account fully for its behaviour. In particular, signal components that are predicted to be inaudi-

ble by a linear analysis are found to be very audible to a real, non-linear, human ear.
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This concept first came to the authors’ attention through the following example. The signal

illustrated in Figure A.1 is intended to demonstrate spectral masking. An 800 Hz tone and a

series of tones, ascending from 400 Hz to 1600 Hz, are presented simultaneously. If the am-

plitude of the stepped tones is smaller than that of the 800 Hz tone (e.g. 20-40 dB down), then

in the region around 800 Hz, they will be inaudible, as they are masked by the louder tone.

However, as the inaudible stepped tones pass above 800 Hz, listeners often perceive a second

series of tones, descending in frequency, below 800 Hz. These are illustrated by the shaded

blocks in Figure A.1. They are not present in the actual signal, but are generated by distortion

within the human auditory system.

As the ascending stepped tones are supposedly masked at this point, this raises an interesting

question: If an audio codec removes inaudible sounds, what will be the effect if it removes

these masked tones? Surely, the (audible) descending distortion tones will also be removed,

thus changing what a human listener hears. This is precisely what a good audio codec should

not do. The audible effect, especially for more complex audio signals, may be slight. However,

transparent audio coding claims to make no audible change to the signal whatsoever, so this

effect merits investigation.

This paper will focus on the most audible distortion component generated by the human ear:

the cubic distortion tone (CDT). Possible methods of determining the amplitude and frequency

Figure A.1: Masking of stepped tones due to 800Hz tone, and resulting cubic difference

tones
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of this internal distortion tone will be discussed, and an equation that accurately predicts these

properties will be presented. The CDTs generated by two tones will be examined for the case

where one tone is below the masking threshold predicted by a psychoacoustic model, and the

audibility of the resulting CDT will be determined. The true nature of the masking threshold

will be discussed, and the extent to which the CDT can mask other spectral components will be

examined. Finally, the relevance of these theoretical calculations to real world applications will

be assessed. The study commences by examining the properties of the cubic distortion tone.

A.2 The Cubic Distortion Tone

The frequency of the cubic distortion tone, arising from two primary frequency components, f1

and f2 (f1<f2) is given by

212 fffCDT −= (A-1)

The cubic distortion tone (CDT) is so called because a difference tone at this frequency is gen-

erated by a 3rd order polynomial transfer function. An early hypothesis [Helmholtz, 1870] sug-

gested that the bones in the middle ear were responsible for such a transfer function, thus giv-

ing rise to the distortion component given by equation (A-1). However, it is now widely be-

lieved that the cubic distortion tone is generated within the cochlea, by the action of the outer

hair cells [Probst et al, 1991]. These hair cells are part of the cochlea amplifier – a mechanism

whereby the Basilar membrane motion due to incoming sound waves is varied by an active

process, which is beyond the scope of this paper. Further details may be found in [Robinson

and Hawksford, 1999] and [Yates, 1995] but here it suffices to understand that this gain control

function of the ear generates, as a by-product, the cubic distortion tone.

Though calculating the frequency of the CDT is trivial, determining the amplitude or perceived

loudness of this tone is a more difficult task. There are three possible methods of gathering this

data from human listeners, which will now be discussed in turn.

A.2.1 Distortion-product otoacoustic emissions

An otoacoustic emission is a sound generated by the ear, which can be detected by objective

rather than subjective means. In our present study, the otoacoustic emission is due to two ex-

ternal tones yielding a distortion product within the ear, hence the name.



PSYCHOACOUSTIC MODELS AND NON-LINEAR HUMAN HEARING

221

In 1979 it was discovered that the cubic distortion tone can be detected by a probe microphone

inserted into the ear canal of a listener who is presented with two appropriate primary tones

(see [Kemp, 1979]). The fact that the cochlea-generated tone propagates back through the

auditory system, into the ear canal, allows the amplitude and phase of the CDT to be recorded,

without relying on subjective feedback from the listener.

Figure A.2 shows a diagram of the apparatus

that may be used. The two primary tones, f1

and f2 are generated by two separate loud-

speakers. Two loudspeakers are used to pre-

vent any distortions that may be created by the

speaker itself, if two tones were generated by a

single device. The two signals are fed via rub-

ber tubes into an earpiece containing a minia-

ture microphone. The signals first mix acousti-

cally in the ear canal, and the levels of the

primaries are calibrated from the microphone

in-situ.

By varying the amplitude and frequency of the two primaries, it is theoretically possible to

map the complete CDT response of the human auditory system (e.g. [Popelka et al, 1993]).

However, comparing the reported subjective level of the CDT with the measured DPOAE level

reveals a large, frequency dependent difference.

The problem lies in the transmission of the CDT from the site of origin within the cochlea,

back through the auditory system via the middle ear, into the ear canal. It has been suggested

[Kemp, 1980] that this reverse path accounts for a 12 dB loss for frequencies around 1-

1.5 kHz, and that the loss increases at around 12 dB/octave either side of this frequency region.

Unfortunately it is not possible to measure the transfer function of this reverse path in any di-

rect manner, so it can only be inferred by comparing measured and subjective data.

Thus the DPOAE fails to yield an objective, absolute measure of the amplitude of the CDT

within the human cochlea. As calibration of the DPOAE relies on subjective data, it seems sen-

sible to turn to that subjective (psychoacoustic) data as an indication of the amplitude of the

Figure A.2: Apparatus used for the

measurement of DPOAEs
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CDT. Two main psychoacoustic methods have been used to determine the CDT level caused

by given stimulus conditions, as follows.

A.2.2 Loudness matching

In this method, a listener is instructed to

match the loudness of the CDT with that

of a probe tone of the same frequency pre-

sented externally, but non-simultaneously.

This subjective judgement is made more

reliable by pulsing the primary tones (and

hence the CDT), and the probe tone alter-

nately, as shown in Figure A.3. Thus,

when the level of the internal CDT and the

external tone are matched, the listener will

hear a continuous tone, whereas if the

probe level is too high or too low, then the pulsing will be clearly audible. Data from such an

experiment [Smoorenburg, 1972] will be referred to later in this paper.

A.2.3 Cancellation Tone

The second subjective method of determining the level of the CDT is to attempt to cancel the

difference tone using an external tone. In addition to the two primary tones, the listener is pre-

sented with a third tone - the amplitude and phase of which are completely under their control.

A highly trained listener can adjust these two parameters until the internal CDT is completely

cancelled out by the external tone. At this point, the amplitude of the external tone is assumed

to match that of the internal CDT. One advantage of this method is that the phase of the inter-

nal tone can also be calculated, as being 180º out of phase from the external tone.

Many experimenters have employed this method, e.g. [Goldstein, 1967], [Hall, 1972] and

[Smoorenburg , 1972]. Several important features are:

1. The CDT level determined via the cancellation tone method can be used to predict the

masking due to the CDT to within 2 dB [Zwicker and Fastl, 1973].

2. The phase prediction via this method is an “equivalent external phase” and its relationship

to the actual internal phase of the CDT is not known.

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1200Hz
1000Hz

800Hz

0

1

2

3

Figure A.3: Measurement of CDT level by

pulsing primary tones and probe tone

alternately



PSYCHOACOUSTIC MODELS AND NON-LINEAR HUMAN HEARING

223

3. A complex formula has been produced to calculate the level of CDT for any pair of pri-

mary tones [Zwicker, 1981]. Such a formulaic prediction is vital if this phenomenon is to

be usefully incorporated into a masking model.

4. Discrepancies exist between the CDT level as measured by this method, and that measured

by the Loudness matching method. The cancellation method can produce CDT predictions

up to 15 dB higher than the loudness-equivalent method.

To explain this final point briefly, the primary tone f1 is thought to suppress the cancellation

tone, such that the required cancellation tone level is larger than the perceived CDT. A long

discussion of this phenomenon is given in [Giguère  et al, 1997].

Thus, a wide range of data is available that quantitatively describes this phenomena. Until the

reverse transfer function from the cochlea to the ear canal (in the presence of auditory stimula-

tion) has been determined, the DPOAE data, though numerous, and objective, are not suitable

for the present study. This leaves the two subjective measures. The first is believed to correlate

well with what we perceive, the second predicts the masking due to the combination tone well.

The difference between the two can be up to 15 dB. Due to the larger amount of data available

to the authors from the second type of study, the cancellation method is chosen to provide the

reference CDT levels throughout the rest of this paper, with the proviso that the real level may

be slightly lower.

A.3 Modelling the CDT

As mentioned previously, there exists a formula [Zwicker, 1981] for calculating the level of

the 2f1-f2 cubic distortion tone LCDT for any given f1, f2, L1, and L2  where L1, and L2  are the

levels, in dB, of  f1 and  f2  respectively. However, this formula is rather complex, and includes

several logarithms. To improve the computational efficiency of the formula, and to gain a

clearer insight into how the CDT varies with the various parameters, the authors developed

their own formulae, which are presented here. The level dependent data used to tune this for-

mula were the same as those presented in [Zwicker, 1981]. The frequency dependent data were

taken from [Goldstein, 1967], cancellation-tone results only.
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The level, in external dB SPL equivalent, of the cubic distortion tone is given by

2
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Where

12 zzz −=∆ (A-3)

And zn represents frequency fn in the bark domain, thus:
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This equation is taken from [Zwicker and Terhardt, 1980], and was used for the following

graphs, for consistency with [Zwicker, 1981]. A more accurate (and more computationally ef-

ficient) formula can be found in [Traunmüller, 1990] which has the advantage of being in-

vertable (i.e. yields f from z as well as z from f ). The formulae include frequencies in the bark

domain because most psychoacoustic audio codecs process the frequency information in the

bark domain when considering the masked threshold.

Equation (A-2) matches the measurements from human subjects for stimulus levels from 30-

90 dB, and for frequencies of 1 kHz or above. This amplitude range corresponds to that for

which human response data was available, however, the equation behaves well outside this

range, and gives realistic values (though for levels which would destroy human hearing, the

predicted LCDT is doubtful!). Any calculated LCDT below the threshold of hearing will be inau-

dible. Also any LCDT masked by the primary tone f1 may be inaudible, though beats between the

CDT and f1 may themselves be audible.
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The just audible LCDT , derived from the minima of [Zwicker, 1979], is given by

15
2

1 −=
L

LMIN (A-5)

Below 1 kHz the equation still follows the same trend as human subjects, but in this region the

human response varies dramatically, especially for lower frequencies. If a more accurate pre-

diction of human perception is required, the frequency dependent term in equation (A-2) may

be replaced, thus:
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The one limit to both equations (A-2) and (A-6) is that for ∆z < 0.45 no CDT is audible, as it

merges into the lower primary tone. This is not indicated in LCDT as calculated, and must be

checked separately via equation (A-3).
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Measured CDT levels
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Figure A.4: Variation in LCDT with L1 and L2 primary tone levels

upper (a) – levels measured via cancellation method from human subjects [Zwicker, 1979];

lower (b) – levels calculated using equation (A-2).
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Measured CDT levels
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plot (a) – levels measured via cancellation method from human subjects [Goldstein, 1967];

plot (b) – levels calculated using equations (A-2)-(A-6)
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Figure A.4 and Figure A.5 show a comparison of the CDT levels measured from human sub-

jects and the CDT levels predicted by equations (A-2)-(A-6). Thus the formulae are shown to

be excellent predictors of the cancellation-tone measured cubic distortion tone level over a

wide variety of stimulus conditions.

A.4 Psychoacoustic Codecs and the Cubic Distortion Tone

The task of a psychoacoustic-based codec is to reduce the amount of data required to represent

an audio signal, whilst minimising the audible difference caused by this data reduction, by ex-

ploiting the properties of the human auditory system.

A typical psychoacoustic codec will calculate the theoretical masking threshold of the incom-

ing audio signal on an instant by instant basis. Any frequency components below this masked

threshold are assumed to be inaudible. Thus a signal to mask ratio can be derived by compar-

ing the masked threshold with the actual signal level at each frequency. Then, depending on

the number of bits available to code the signal, the codec can determine which frequency bands

are most audible, and require accurate coding; and which contain no audible information, and

can be filled up to the masking threshold with quantisation noise, or ignored.

There are two situations where knowledge of the cubic distortion tone may improve the accu-

racy of this masking calculation. In the first, the codec may incorrectly remove a supposedly

inaudible frequency component that creates an audible CDT within the auditory system. This

mistake can be prevented by calculating the CDT level due to a dominant frequency and the

closest masked spectral component, and retain the masked component if the CDT is audible.

Secondly, if the CDT is large, it may itself create masking, and so yield a higher masking

threshold than traditional masking threshold measures. Here, knowing the presence of the CDT

may save some bits, or free some bits to encode an audible part of the signal spectrum. Each

situation will be considered turn.
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A.4.1 Masked primary tone

Consider a single 1 kHz tone @ 85 dB. This is an uninteresting (and unchallenging) signal to

code, however it serves as a good example of how, even in a simple situation, a codec may re-

move an audible frequency component. Figure A.6 shows the masking threshold of the 1 kHz

tone as predicted by two psychoacoustic models: The classic Johnston model [Johnston,

1988b] and the MPEG-1 Psychoacoustic model I [ISO/IEC 11172-3, 1993]-D. Though these

are two of the simplest psychoacoustic models, the methods employed in these codecs are

widely used. The lower masking thresholds predicted by the Johnston model are due to that

models level of masking reduction for a pure tone – the MPEG-1 model reduces the masking

prediction by around 5 dB, the Johnston model by around 25 dB relative to the masking pro-

duced by a similar amplitude noise.

Masking threshold predictions for 1kHz tone
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A masked tone may lie in the frequency region above or below the masker, as long as it falls

under the masking threshold curve. First, consider a masked tone of 1.1 kHz, i.e. one that is

higher in frequency than the masker. If the level is set at the threshold of masking predicted by

the MPEG-1 model (see Figure A.7), then the resulting CDT is also below the predicted

masking threshold. So our MPEG-1 model predicts that the tone at 1.1 kHz has no audible ef-

fect, either due to itself, or due to the resulting CDT. However, equation (A-5) suggests that

the CDT will be audible at this level, and human listeners confirm this. The Johnston model

predicts the masking threshold at 1.1 kHz to be 56 dB, and this matches the f2 level at which

the 900 Hz CDT is just audible. In this instance it would seem calculating the CDT merely

confirms the masking prediction of the Johnston model, but shows that the MPEG-1 model is

incorrect.

At a slightly lower f2 frequency of 1.08 kHz @ 60 dB, the CDT is just audible (at 36 dB1)

whereas both models predict that the CDT and the f2 primary tone are masked. Thus both psy-

                                                  

1 ∆z=0.496 – equation (A-3) – if f1 and f2 were any closer, the CDT would be indistinguishable – see Section

A.3
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choacoustic models are in error. However, the spectral/intensity region over which this occurs

is only 4 dB high and 100 Hz wide.

Now, consider the condition where the “masked” tone is at a lower frequency than the masker.

Taking a 1 kHz tone @ 85 dB, a tone is added that the psychoacoustic models predict to be

masked – a 900 Hz tone @ 52 dB. The resulting difference tone, 800 Hz @ 26 dB, also lies

under the predicted masking curve, as illustrated in Figure A.8. However, it is known from the

formulae outlined in Section A.3, and from actual experimental data, that this CDT is audible.

These examples prove that there are possible 2-tone combinations where the quieter tone,

though the psychoacoustic models predict that it is inaudible, does make an audible contribu-

tion to the sounds in the form of a cubic distortion tone at 2f1-f2. Figure 9 shows the regions

over which such a (theoretically masked) second frequency component will yield an audible

CDT. In effect, the shaded area under the masking curve indicates the region over which the

non-linearity of the ear will unmask sounds. At 8 kHz (Figure 9-b) this region is smaller, but

still present for the MPEG-1 psychoacoustic model.
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A.4.1.1 Real World Applications

Though it has been shown that the CDT generated by non-linear properties of the human ear

may cause unmasking in certain theoretical conditions, there are a number of issues to consider

with respect to using this knowledge in a real-word audio codec.

Firstly, the CDT is generated by two tones. There is also a similar effect generated by two

bands of noise, but it is at a much lower level [Probst et al, 1991]. Thus, the CDT is only rele-

vant for highly tonal signals. Such signals are of a relatively low complexity, and in many in-

stances, require less bits to code transparently than a more noise-like signal. If a fixed bit-rate

codec finds that there are bits to spare after encoding the most prominent spectral peaks, it may

allocate some bits to “just masked” spectral peaks. As our unmasked f2 is always within 15 dB

of the masking threshold, it is likely that the codec may allocate some bits to it, even though it

is “inaudible”, since there are bits to spare and a tonal component near threshold represents a

sensible allocation of those bits.

There may be very few highly tonal signals where spectral peaks are close enough to generate

a CDT. Figure A.10 shows the spectrum of a recorder note, taken from a commercial CD, and

also the spectrum of a poor quality coded version of it. Note the spectral peaks just below the

fundamental tone, caused by reverberation of the previous notes. These are closely spaced, and

may cause a CDT, though the harmonic structure of a single note (without the echo of previous

notes) does not have such closely spaced frequencies. In this example, the three largest spectral

peaks below the fundamental are all just above the masking threshold (as predicted by the

Johnston and MPEG-1 models) so it is not surprising that the MPEG-1 layer 3 codec retains

them. The authors are unaware of any recordings containing spectral peaks such as these that

fall just below the predicted masking threshold, but are unmasked by CDT, though they may

exist. An automated search for such situations can only by achieved via incorporating CDT

 

Figure A.10: Spectrum of recorder note: (a) original, (b) coded mp3 @ 96kbps
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detection into a psychoacoustic codec. This task has not been attempted, and is hampered by

the fact that the tonal/noise-like discrimination in the two codecs discussed herein does not

correctly identify the f2 components of Section A.4 as tones, but incorrectly classes them as

noise-like signals. Without any automatic system for detecting signals that may benefit from

CDT additions to the masking threshold calculation, all that can be stated is that it seems likely

that the CDT phenomenon will only be relevant for a very small percentage of audio signals.

Secondly, the temporal response of the distortion tone has not been studied here, but as with all

auditory phenomena, the steady state response can only yield an approximate indication of the

instantaneous response to a sound.

Thirdly, it should be noted that third order distortion is not confined to the ear. Even high-

quality transducers are non-linear devices, and can add a considerable amount of distortion,

especially at high amplitude levels. In our tests, the authors found that the CDT produced by

sending both primary tones through one loudspeaker could often be greater than the CDT due

to the human auditory system. Especially at levels in excess of 80 dB, when L2 was 10-30 dB

lower than L1, considerable amounts of CDT were audible, well outside the range of audibility

predicted by our formulae. It is possible that non-linear equipment, in addition to the non-

linear human ear, may unmask certain spectral components, and account for differences that

we hear between original and coded audio extracts.

Finally, it may have occurred to the reader that the effect of the CDT on the masking threshold

may be more simply modelled by lowering the masking threshold slope to match that implied

by the CDT (i.e. the lower boundary of the shaded area in Figure 8). This raises the question:

what exactly does the predicted masked threshold measure, and what is the definition of the

true masking threshold?

The masking threshold predicted by most audio codecs matches the internal excitation due to

the masker, shown in Figure A.11. [Robinson and Hawksford, 1999] provides a full description

of the auditory process that gives rise to this excitation pattern, but in simplified terms, the fil-

ter-bank within the human auditory system has a sharp cut off above the target frequency, but a

shallower cut off below it, which tends to –40 dB rather than –infinity. Thus lower frequencies

leak into the higher frequency bands, and the excitation due to any spectral component will

extend to higher frequencies, causing the well-known upward spread of masking. For noise-

like signals, this excitation pattern matches the masking threshold, but for tone-like signals, as
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has been shown, there is a discrepancy be-

tween the known excitation pattern, and the

known threshold of masking.

Another problem in calculating the masking

threshold is one of definition. Is a tone masked

when the tone itself is inaudible, or when all

effects due to the tone are inaudible? There is a

difference between these two thresholds, since

the CDT (and beats between the masker and

the possibly masked tone) is audible even

when the masked tone is not. These two

thresholds are determined by different experi-

mental conditions: The first by instructing the listener to concentrate on the possibly masked

tone; The second by instructing the listener to listen for any difference in the sound produced

by the presence of the possibly masked tone. Surely the second type of test is relevant to psy-

choacoustic codec design, since the aim is to make no audible difference to the signal. How-

ever, codecs are often designed using data from the first type of test.

Figure A.11: Excitation within human

auditory system due to 1kHz tone
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A.4.1.2 Effect of Beats

Figure A.12 shows the human masking thresholds measured using a test of the second type

[Moore et al, 1998], overlaid on the threshold predictions of our codecs, and the region of

audible CDTs. It is evident that the codecs are inaccurate by up to 20 dB, and also that the

CDT does not account for the whole discrepancy. It must be stressed that, as explained in Sec-

tion A.2.3, our calculated CDT may be up to 15dB different from the internal perceived CDT

level, and this may account for some of the discrepancy (though this is unlikely, as the discrep-

ancy is largely in the opposing direction – see [Giguère et al, 1997]). However, [Moore et al,

1998] suggests that the lower threshold is due to beating between the second (masked tone)

and the 1 kHz tone, and also to beating between the CDT and the 1 kHz tone. These two sets of

beats fall at the same frequency, since

|||| 121 ffff CDT −=− (A-7)
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Hence they re-enforce each other, lowering the threshold to the measured values. Methods and

equations to predict such interactions are beyond the scope of this paper, but it is suggested

that, rather than attempting to fit curves to steady state data, a complete auditory model may be

more effective. By modelling the processes within the auditory system that give rise to meas-

urable masking, a more accurate threshold of masking can be calculated than by extrapolating

from simple steady-state tone or noise masking measurements. If this is the distant future of

transparent audio coding at ever lower bit-rates, then adapting the masking curves that are built

in to existing audio codecs to more closely match the measured data can only be a short-term

solution. However, an accurate auditory processing model will be prohibitively computation-

ally burdensome in comparison to existing codecs, and the quality/bit-rate gains may, or may

not be significant.

A.4.2 Masking due to CDT

Figure A.13: Extra region of masking (shaded) provided by the CDT
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If two tones create a third (distortion) tone in the human auditory system, this tone will also

have its own region of masking. Any spectral components falling below this CDT masking

threshold will be inaudible, and hence may be ignored.

An audible CDT will be generated if the two primary spectral components have the same am-

plitude. However, much of the masking due to this extra distortion tone will coincide with the

masking due to f1. For 1 kHz and 1.2 kHz tones at 85 dB, this will alter the lower masking

threshold slope by 2 dB for the Johnston model, and 3 dB for the MPEG-1 psychoacoustic

model.

A more significant effect occurs if the amplitude of f2 is larger than that of f1. Consider a 1 kHz

tone at 70 dB, and a 1.2 kHz tone at 90 dB. Equations (A-1)-(A-5) indicate that these two tones

will give a distortion tone of 42 dB at 800 Hz. The MPEG-1 psychoacoustic model is used to

predict the masking due to the two primaries, and also the masking due to the two primaries

plus the CDT. The difference between the two masking threshold curves indicates that the

CDT increases the masking threshold around 800 Hz by 15 dB (see Figure A.13). As the can-

cellation-tone measured CDT level accounts for the masking due to the CDT to within 2 dB

(see Section A.2.3), this is a significant result.

A.4.2.1 Effect of Beats

In the previous section, it was noted that beats also have a role to play in the unmasking of

spectral components. However, the beats themselves cannot be used to mask other spectral

components. Whereas the CDT causes an excitation within the auditory system at the fre-

quency associated with it, there is no such excitation at the beat frequency, hence no masking

will occur2. We perceive the CDT by detecting the resulting frequency component in the same

manner as we do any external frequency. However, beats are detected by the amplitude modu-

lation that occurs within the auditory filter mid-way between the two primary frequencies,

which is generally not tuned to the actual beat frequency. For example, a 1 kHz and 1.1 kHz

tone will beat at 100 Hz, but this beating will be detected by the auditory filtered centred at

                                                  

2 The amplitude modulation of the beats may hinder the detection of another simultaneous amplitude modu-

lation, but this is beyond the cope of this paper.
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1.05 kHz; the auditory filter at 100 Hz will not be excited, hence there will be no resultant

masking3.

A.4.2.2 Real World Applications

In the Section A.4.2, the rarity of audio signals that may be more accurately processed by tak-

ing the CDT into account was discussed. These comments are also true here. However, as the

region over which the CDT affects the masking threshold is larger for this second phenome-

non, it should find slightly wider use.

One important feature is that the CDT tone depends on the levels of both f1 and f2 in a complex

manner, as shown by equation (A-2). For the CDT to provide a useful masked area in which to

hide quantisation distortion, the level of the CDT tone must scale with the level of f1 and f2 in a

roughly linear manner. Otherwise, decreasing the gain of the replay system may cause the

CDT level to decrease more rapidly than the quantisation noise that it is hiding, hence un-

masking it.

Figure A.14 shows that, as the gain is reduced (i.e. L1 and L2 are reduced by equal amounts),

the level of the CDT is reduced correspondingly. Thus any quantisation distortion masked by

the CDT will not be unmasked as the replay level is altered. Hence, the extra masking pro-

duced by the CDT is shown to be a useful region in which to hide quantisation noise.

                                                  

3 If the two frequencies are sufficiently separated, such that no auditory filter detects both, then we fail to

perceive any beats.
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A.5 Conclusion

In this paper, it as been shown that distortion tones generated by non-linearities within the hu-

man auditory system may affect the masking thresholds of pure tones. The cubic distortion

tone (CDT) was identified as the most audible distortion product, and formulae were presented

to calculate its frequency and amplitude.

The masking threshold predictions of two auditory models were shown to be misleading. Over

a small frequency range, tones that were up to 15 dB below the predicted masking threshold

were found to generate audible CDTs. It was suggested that a true definition of a masked tone

is that its presence makes no audible difference to the signal; Thus the CDT can be said to un-

mask tones by up to 15 dB, though the level of CDTs is dependent on measurement method.

However, the presence of beats may unmask tones by even larger amounts.

It has also been shown that the presence of the CDT can raise masked thresholds around the

CDT frequency by up to 15 dB. This masking is independent of replay level, so may be utilised

by an audio codec to conceal quantisation distortion.

Variation in LCDT with L1+L2
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The overall effect of the cubic distortion tone on masking thresholds is found to be small. Both

effects discussed here are most prominent for tonal signals, and so may find a limited applica-

tion in audio coding. It is suggested that, where perfectly transparent coding is required at the

minimum possible bitrate, a model of the non-linear processing within the human auditory

system may be used to accurately predict masking thresholds. Such an approach will be com-

putationally burdensome, and may or may not yield an improved quality/bit-rate ratio. In the

interim, prediction of the CDT using the methods outlined in this paper may be applied to ex-

isting audio codecs.
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Masking noise

Throughout this work, it is assumed that the threshold condition within a masking experiment

gives rise to some just detectable internal difference.

This implies that if a subject auditions the masker in isolation, and then the masker plus target,

the only audible difference between the two signals is, logically, the target. Further, the pres-

ence of the target must cause some difference within the internal representation of the signals,

and this difference corresponds to a “just noticeable difference”.

It is suggested that the internal difference between the masker only and the masker plus target

must be comparable to the internal difference between no sound and a sound at the absolute

threshold of hearing. This is discussed extensively in [Zwicker, 1990], where it is demon-

strated that this is largely true.

Unfortunately, this ignores one common feature of psychoacoustic experiments. Where a noise

masker or target is employed, this noise is usually produced by an analogue noise generator.

As such, the masking noise “sample” will be different for each presentation. This means that

the difference between the masker, and the masker plus target will not only be due to the tar-

get, but also the variability of the random noise. Thus, for the target to be audible, it must not

only exceed some internal threshold (assumed to be due to internal noise) but it must also

exceed the variation from noise sample to noise sample.
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Where the same noise sample is used for each presentation, it is said to be “static” or “frozen”.

Such stimuli are rarely used with psychoacoustic tests, though they are becoming more com-

mon with the widespread use of PCs for signal generation. Within the present work, all noise

stimuli are frozen.

The difference in threshold due frozen noise maskers and random noise maskers is usually no

more than 3 dB, due to the power addition of noise. This 3 dB offset is assumed to be unim-

portant within the present work, since it can easily be corrected for. Further, the variation of

threshold between two listeners is usually greater than 3 dB, so it can be said that this factor is

insignificant.

In one test, the use of frozen noise was found to have a greater impact on the threshold. The

experimental determination of the minimum audible gap in a burst of noise is used to calibrate

the monophonic model. The quoted threshold value is a gap of 3 ms [Penner, 1977]. The task

is to compare two bursts of noise, and to determine which burst contains the gap. For random

noise, the threshold of 3 ms is correct. However, for frozen noise, the threshold is closer to

2 ms, and may be slightly less. Thus, because the noise does not change from presentation to

presentation, it is significantly easier to detect the gap.

The reason that frozen maskers are used through the present work is as follows. The original

version of an audio extract is always the same. It does not change from one listening session to

another. Thus, a listener may learn the features of this extract, even if it is “random” noise,

since the noise will sound the same every time the extract is auditioned. If the model were

made insensitive to changes in random noise, then the audio codec could generate a new dif-

ferent extract of noise, and the model would not detect this. However, if this noise formed an

important part of the audio extract, the listener would detect the change, so it is inappropriate

to configure the model to ignore it.
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Monophonic model calibration data

The table on the following page contains the calibration data for the monophonic model, and

the references from which this data is taken.



Reference Task Masker Target Delay Target Threshold

[Penner, 1977] Gap detection
White noise
20 Hz – 20 kHz
87 dB SPL (44 dB SL)

Silence - 3 ms1

[Reed and Bilger,
1973] and
[Green et ak, 1959]

Noise masking tone
White noise
0 Hz – fs/2
78 dB SPL (35 dB SL)

1 kHz tone - 45 dB

[Gehr and Sommers,
1999]

Temporal pre-
masking

(backwards mask-
ing)

White noise
LPF @ 8.5 kHz
80 dB SPL (41 dB SL)
50 ms

500 Hz tone
10 ms duration

1 ms
2 ms
4 ms
6 ms
8 ms
10 ms
20 ms

39 dB
36 dB
33 dB
31 dB
27 dB
27 dB
24 dB

[Zwicker, 1984]
Temporal post-

masking
(forwards masking)

White Noise
20 Hz – 20 kHz
80 dB SPL
200 ms

2 kHz tone
5 ms duration

0 ms
5 ms
10 ms
20 ms
50 ms
100 ms

75 dB
66 dB
56 dB
43 dB
31 dB
23 dB

[Moore and Alcán-
tara, 1998]

Tone masking noise
1 kHz tone
85 dB SPL

Noise band
1 kHz, 80 Hz wide

45 dB SL (64 dB SPL)

intensity
discrimination

1 kHz tone
60 dB SPL

1 kHz tone
61 dB SPL

presented
sequentially

1 dB intensity difference

                                                  

1 Penner uses gated continuous random noise, such that the presentation without the gap uses a different noise sample to that with the gap. In the current scenario, the two

presentations use the same noise sample. This reduces the threshold to 2 ms. For further discussion of this issue, see the previous appendix.
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Spatial masking reference data

Tonal signals shall be referred to in dB SPL. This is a measure of the energy in the signal. For

a pure sine wave, this is equivalent to the peak to peak excursion divided by root two. For a

single sine wave is it also equivalent to the spectrum level.

Noise signals shall be referred to in dB SPL / Hz, known as the spectrum level, SL or N0. This

is not the total energy of the signal, but a measure of energy per unit bandwidth. If the band-

width of the noise is known, then energy and spectrum level are related by the following

formulae:
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If the signal is spectrally white, then it is assumed to have a bandwidth of 20 kHz, unless

otherwise stated in the literature.
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A time averaged spectral view of a tonal signal, frequency f Hz, energy x dB SPL would show

a single peak at f Hz of x dB. A time averaged spectral view of a white noise signal band-

limited 0-20 kHz, energy x dB SPL / Hz would show a flat line from 0-20 kHz at x dB. This

may seem obvious, but by referring to spectrally flat band limited noise signals in dB SPL / Hz

an insight is gained into the relative amplitudes of target and masker which is not apparent

when quoting the noise power in dB SPL energy (Vrms
2).

To compare data from different experiments, the masking will quantified as target level minus

masker level, where the target and masker levels have units of dB SPL for tone or dB SPL / Hz

for noise. In the literature, this measure is sometimes referred to as S/No for noise masking

noise, and E/No for tone masking noise. A positive value indicates that the target must be

louder than the masker to be audible (typical in noise masking tone tasks); a negative value

indicates that the target is audible when quieter than the masker (typical in tone masking noise

tasks).

In the following tables, results from the spatial masking experiment in Chapter 6 are quoted

first; results from the literature are quoted second. The comparable results are highlighted in

bold type. Where the results from the literature may not be directly comparable with those

from the present experiment, the differences are highlighted, and their importance is discussed.
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D.1 Experiment 1

Masker: 35 dB / Hz band-limited (20 Hz – 20 kHz) white noise

Target: 1 kHz tone

Results from the spatial masking experiment in Chapter 6:

thresholds for 1 kHz tone in dB SPL = WS:52.6, DR:45.7, SS:53.4

diff = SPL (target tone) - Spectrum Level (noise masker) = WS:17.6, DR:10.7, SS:18.4

Results from the literature:

diff (quoted is E/N0 in literature) = [Reed & Bilger, 1973]:10.5,

[Green et al, 1959]:10

D.2 Experiment 2

Maker: 35 dB / Hz bandlimitted (20 Hz – 20 kHz) white noise

Target: 8 kHz tone

Results from the spatial masking experiment in Chapter 6:

thresholds for 8 kHz tone in dB SPL = WS:59.9, DR:54.3, KF:58.3

diff = SPL (target tone) - Spectrum Level (noise masker) = WS:24.9, DR:19.3, KF:23.3

Results from the literature:

diff (quoted is E/N0 in literature) = [Reed & Bilger, 1973]:18.2
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D.3 Experiment 3

Masker: 80dB SPL 1 kHz tone

Target: 80Hz wide 1 kHz centred noise.

reference level: 80 dB SPL (energy) = 61 dB SPL / Hz (SL)

Results from the spatial masking experiment in Chapter 6:

just audible noise in dB SPL (energy) = WS:61.5, DR:55.8, SS:54.5

just audible noise in dB SPL / Hz (SL) = WS:42.5, DR:36.8, SS:35.5

diff = SL (noise target) – SPL (tone masker) = WS:-37.5, DR:-43.5, SS:-44.5

Results from the literature [Moore et al, 1998]:

masking = JA:54, BM:60, HF:56

threshold of 1 kHz tone in silence = JA:11, BM:3, HF1:8

just audible noise in dB SPL (energy)

= masking + threshold

JA:65, BM:63, HF: 64

just audible noise in dB SPL / Hz (SL) JA:46, BM:44, HF:45

Masker: 85 dB SPL 1 kHz tone (5 dB louder than above)

diff = SL (noise target) – SPL (tone masker) = JA: -39; BM:-41; HF: -40

This table is discussed on the following page.

                                                  

1 There is a typing error in the original document. Throughout the text, and in the caption to Figure 3, one

listener is referred to as “HF”. However, Table 1 (absolute thresholds) contains no data for listener HF, but

does contain data for listener “HV”. Since the text directly refers to listener HF as being listed in Table 1, and

since the letters F and V are adjacent on a QWERTY keyboard, the author has assumed the data in Table 1

listed under HV correspond to listener HF.



SPATIAL MASKING REFERENCE DATA

250

In this comparison, the two experiments are not entirely equivalent. [Moore et al, 1998] is

different from the present work in the following aspects:

♦ All levels were measured at the ear drum.

 This difference will cancel when using narrow band stimuli.

♦ A 85 dB masker was employed (5 dB louder than in the present experiment)

 Since the difference between the masker and target is the figure under scrutiny, this

will cancel if the amount of masking scales linearly with amplitude. This is not true

over a very wide amplitude range. However, over a range of 5 dB, the relationship

between masker and target is quasi linear, and the non linearity may be neglected. This

demonstrated in [Reed and Bilger, 1973].

♦ Different noise stimuli were employed in each presentation (in the present experiment, a

frozen noise masker was employed)

 This may be significant, and is probably the cause of the lower thresholds obtained in

the present experiment. See Appendix B for further details.

Finally, the use of the threshold tone figure as a basis for calculating the level of the target is

suspect, since the target is a noise band , not a pure tone.
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D.4 Experiment 4

Masker: 80 dB 1.5kHz tone

Target: 80Hz wide 1 kHz centred noise.

Reference level: 80 dB SPL (energy) = 61 dB SPL / Hz (SL)

Results from the spatial masking experiment in Chapter 6:

just audible noise in dB SPL (energy) = WS:21.7, DR:10.9, SH:14.7

just audible noise in dB SPL / Hz (SL) = WS:2.7, DR:-8.1, SH:-4.3

diff = SL (noise target) – SPL (tone masker) = WS:-77.3, DR:-88.1, SH:-84.3

Results from the literature [Moore et al, 1998]:

masking = JA:10, BM:10, HF:15

threshold of 1 kHz tone in silence = JA:11, BM:3, HF:8

just audible noise in dB SPL (energy) = JA:24, BM:14, HF:22

just audible noise in dB SPL / Hz (SL) = JA:5, BM:-5, HF:3

masker = 85 dB SPL 1 kHz tone (5 dB louder above)

diff = SL (noise target) – SPL (tone masker) = JA:-80, BM:-90, HF:-82

In this comparison, the two experiments are not entirely equivalent. [Moore et al, 1998] is

different from the present work, as discussed in the previous section. In addition, [Moore et al,

1998] use a 600 Hz noise target with 1 kHz tone masker, as opposed to the 1 kHz noise target

with 1.5 kHz tone masker employed in the present work. This is the closest experiment in the

literature, but does not match the present work perfectly. This is a problem, because the

amount of masking changes with frequency in a non-linear manner. All that can be said is that

the two sets of figures are somewhat comparable. The similarity of the results indicates that

there was no major error in the present experiment.



SPATIAL MASKING REFERENCE DATA

252

D.5 Experiment 5

Masker: White noise

80 dB SPL (energy) = 37 dB SPL / Hz (SL)

Target: 2 kHz tone burst

Results from the spatial masking experiment in Chapter 6:

just audible tone in dB SPL = WS:53.8, DR:51.2, AR:57.5

diff = SPL (tone target) – SL (noise masker) = WS:16.8, DR:14.2, AR:20.5

Results from the literature [Moore et al, 1998]:

Just audible tone in dB SPL (median,  ± one quartile) = [Zwicker, 1984] 56, 60, 52

diff = SPL (tone target) – SL (noise masker) = [Zwicker, 1984] 19, 23, 15

D.6 Conclusion

The threshold values for coincident targets and maskers from the spatial masking experiment

match data from the literature.
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Why lateralisation experiments are not
predicted by the model

Possibly the most common binaural hearing experiment involves the comparison of ITD and

IID cues, in what is called a “trading experiment”.

When listening over headphones, if an identical stimulus is fed to each ear, then the sound

source will be perceived as originating from the centre of the listener’s head. Introducing an

interaural time delay will displace the perceived location of the sound towards the ear that first

receives the sound. Also, an interaural level difference will displace the perceived location of

the sound towards the ear which receives the loudest signal.

Psychoacusticians have been fascinated by the relationship between these two phenomena. In

particular, they have tried to measure the effective equivalence of these two interaural quanti-

ties in the form of trading experiments. In such an experiment, a fixed interaural time delay is

added to the stimulus, and the listener must determine the correct, opposing interaural level

difference which will bring the perceived location of the sound source back to the centre of

their head. The ILD is adjusted by the candidate, and when this has been achieved, the oppos-

ing ITD and ILD are said to be equivalent.

It was first hypothesised that the ITD and ILD were traded within the auditory system in the

manner suggested by this experiment. That is, the ITD and ILD were combined, and a single

localisation position was fed to the brain. Many models include just such a mechanism to com-
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bine the two cues into a single lateral position. (See [Colburn and Durlach, 1978] for a review,

especially section II: Count comparison models).

There are several strong indicators that the auditory system does not work in such a simplistic

manner. Firstly, in trading experiments, many candidates cannot “bring the source back to the

centre of their heads” with an opposing ILD – rather, the source splits into two, or become dif-

fuse. If two opposing cues can cause the perception of two separate sources, it is unlikely that

the two cues are unified into a single lateral position before they are “perceived”. Secondly,

even moderate ITDs cancelled by small ILDs do not sound the same as the original mono-

phonic signal. Finally, it is quite likely that the comparison of ITD and ILD acts as a distance

cue for sound sources near the head. This is possible because a source travelling along a con-

stant bearing gives rise to a constant ITD, whereas the ILD increases dramatically as the source

nears the listeners head. It would be sensible for the auditory system to use this property as a

distance cue, and there is evidence that this is exactly what occurs [Brungart et al, 1999]. If

this is the case, then at least some part of the auditory system must have access to the locations

implied by both the ITD and the ILD, and not just a combined version of them. It seems that

the traded ITD and ILD values which give rise to lateralisation are the exception, rather than

the norm, and may represent a “collapsed” special case of the distance detection mechanism.

The purpose of this discussion is to justify the lack of an ITD / ILD trade mechanism within

the model, and the inability of the model to predict the performance of human subjects in

trading experiments. As mentioned in the main text, the model as it stands does not predict the

perceived location of a sound source, but it can correctly detect changes in the perceived loca-

tion. The mechanism that detects the just noticeable change in source bearing is the same

mechanism that detects a spatially separate target in the presence of a masker. Both these

events can be thought of as generating blips on the “binaural radar”. In reality, they generate

slight interaural phase shifts that are detected by the internal correlation array.

The model predicts that a traded ITD and ILD sounds different from a monophonic signal be-

cause these two cues are not equivalent within the auditory system. Though a human listener

will perceive both signals as being located at the centre of their head, the two signals will not

“sound” the same. The traded sound will have an entirely different character from the mono-

phonic sound – one or the other will sound distinctly more “natural”. Whilst it would be possi-

ble to extend the model to trade ITD and ILD to make the two sounds equivalent, this would

make the model deaf to any similar unnatural localisation characteristics which may be intro-



LATERALISATION EXPERIMENTS

255

duced by an audio codec. An accurate perception would be given by the addition of a full lo-

calisation device to the model, so that the existing binaural processor would indicate that the

sound had changed in some way, while the localisation processor would indicate that the sound

was still located at the centre of the listener’s head. This is discussed in Chapter 9.
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Required number of binaural channels

It can be argued that the auditory system uses hundreds of overlapping channels of correlation,

rather than the 31 of the Binaural model described in Chapter 7. Consequently, the auditory

system contains no interpolating process comparable to the oversampling stage of the binaural

model, since sufficient data is already present within the HAS. It is reasonable to question why

this approach is not used within the present model, since the design principle of the model is to

match known physiology as closely as possible.

The answer is that this approach could be used within the model, but it brings no functional

advantage, and one severe disadvantage. The disadvantage is one of computational burden:

processing hundreds of channels rather than 31 will increase the computation time by an order

of magnitude.

To prove that this approach would bring no advantage, it is necessary to examine sampling

theory. It is known that a continuous function may be represented by a series of discrete sam-

ples. The continuous function may be exactly recreated from these samples (i.e. the samples

contain all the information that is present in the original function) if there are no frequency

components higher than fs/2 within the original continuous function, where fs is the sampling

frequency, and 1/fs is the spacing between sample points.

A signal with a period of 10 µs would have a frequency of 100000 Hz, or 100 kHz. A sampling

frequency in excess of 200 kHz would be required to represent such a signal. However, a 10 µs

delay between two 1 kHz signals is preserved within the sampled representation of the two
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signals, even if the sampling frequency is only 5 kHz. In the time domain, the 10 µs delay can

be verified, even though the sample points are separated by 200 µs.

Likewise, within the binaural model, the ITD is represented by the position of the peak within

the time-delay domain. This peak will often fall between sample points, but it is correctly rep-

resented by those sample points, so long as no attempt is made to store frequency components

in excess of half the sampling rate.

If a rectangular correlation window were used in the model, then frequency components higher

than half the sampling rate in the time-delay domain could have been sampled. However, the

gaussian windowing of the time-delay domain effectively low passes the data in this domain

before it is (re)sampled. From sampling theory, this ensures that the channels contain all the

information possible after the low pass filter. The addition of any further channels would not

increase the accuracy of the information; instead, the extra channels would provide redundant

information, the presence of which would simply slow the subsequent processing.

This raises a further question: is it appropriate to use a gaussian window function to low pass

filter the time-delay domain signals? This is discussed in Section 7.4.3. The conclusion is that

the rectangular correlation window of Colburn’s model is effectively smoothed by the internal

noise. The equivalent performance can be achieved in a model without internal noise by gaus-

sian windowing of the EEVM output.

For these reasons, 31 gaussian windowed channels, subsequently oversampled, are equivalent

to many hundreds of channels without oversampling.

The economies of storage and computation achieved by the use of oversampling should not be

underestimated. The over sampled data is immediately cleared after the peak has been deter-

mined, before the next sample is processed. This saves an immense amount of storage space.

Gaussian windowing 31 channels, rather than many hundreds, reduces the computational bur-

den considerably.
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Confidence value

The following figures (from [Zwislocki and Feldman, 1956]) demonstrate the manner in which

the just detectable change in inter aural time delay increases as the level of the stimulus de-

creases.

level / dB phase difference / ° ITD / µs

10 12.5 34.7

30 7.5 20.8

50 5.5 15.3

70 4.0 11.1

90 4.5 12.5

110 5.5 15.3

Table G.1: level and minimum audible phase difference, converted to ITD.

Stimuli reflecting the above conditions were processed through the model. The confidence val-

ues required to match these thresholds were determined. A psychometric function was adjusted

to match these values.

A psychometric function is usually used to describe the probability of detecting the target sig-

nal in a masking experiment. The probability of detection p(x) is given by
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where x is the target amplitude, T is the amplitude at which the target has a 50% chance of de-

tection, and m is the slope parameter defining the spread of the psychometric function. This

equation is calculated by integrating the gaussian distribution function. See [King-Smith and

Rose, 1997] for further discussion of the psychometric function equation.

A second psychometric function is used to reduce the confidence value to zero as the threshold

falls to zero.
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High quality listening test

H.1 Overview

This test is described in [Van den Berghe, WEB-1]. The results of this test are included here by

permission of Roel Van den Berghe (r3mix). 42 listeners took part, 14 failed to differentiate

the codecs, a further 13 scored the hidden reference lower than one of the other codecs. The

remaining 15 listeners are categorised as “reliable”. Removing the unreliable listeners does not

change the ranking of the codecs, but only the range of the results. For this reason, the results

of all listeners are included in the data used in Chapter 8, which is calculated by summing all

the scores on a codec by codec basis.

H.2 Procedure

Eight different high-quality mp3 codec settings are compared. The purpose of the test is to

determine which combination of psychoacoustic model, bit allocation scheme, and bitrate offer

the highest quality in an open source mp3 encoder [Taylor, WEB]. The large number of listen-

ers who failed to differentiate between the various settings and the hidden reference is an

indication of the high quality of the codec. The lowest quality sample is encoded at 192 kbps

constant bitrate. The hidden reference is coded by the MPEGplus encoder [Buschmann, WEB],

tuned to provide near lossless coding at 740kbps. This near-lossless codec is employed as a

hidden reference (instead of the original signal) to prevent listeners from discovering the hid-

den reference by waveform subtraction. The scores of listeners who mis-scored this codec are

not discarded, so the hidden reference has indicative status only. Thus, any arguments about

the applicability of a (ultra high quality) coded extract being used as the hidden reference are

void.
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The stimulus consists of a selection of audio extracts. All listeners who submitted reliable

results commented that the solo hi-hat extract suffers significantly greater audible degradation

than any of the other samples. For this reason, only the hi-hat extract is auditioned by the

model. Many listeners report audible pre-echo problems, or temporal smearing. This is a criti-

cal test for the model, as a previous version of the monophonic detector (Appendix J)

performed poorly at signal onsets, where such distortion occurs.

Each listener graded each extract using the 5-point continuous grading scale described in

Chapter 2. Most listeners used a single decimal place, and most of the reliable listeners com-

mented in their feedback that they had used ABX testing to ensure that any differences they

perceived were not imagined.

The decoded audio extracts employed in the test are included on the accompanying CD-ROM.

Thus, the test is verifiable and repeatable. The reader may wish to audition the audio extracts

to gauge the magnitude of the audible errors that are presented within this subjective test.

H.3 Results

clip ref: 0a 24 35 41 61 a1 b1 c3

lame 3.90a7
mode:

cbr192
MS

GPSY-
CHO

abr224
MJ

nspsytune
nssafejoint

--r3mix dm-xtr

MPEG+
insane
-nmt99
-tns99

lowpass
19.5

dm-ins
cbr256

nspsytune
nssafejoint

dm-std

bitrate/kbps 192 221.3 199.6 231.8 740 272.8 256 221.9

result 01 4.0 4.5 4.1 4.5 5.0 4.0 4.0 4.3

result 02 3.7 3.9 4.0 4.2 3.8 3.5 3.2 3.7

result 03 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 04 4.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0

result 05 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 06 4.5 4.7 4.7 4.7 5.0 4.7 4.7 4.7

result 07 3.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 08 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 09 3.3 4.0 3.3 3.0 5.0 3.2 3.8 3.5

result 10 4.0 4.4 4.5 4.2 4.7 4.3 4.6 4.1

result 11 3.7 4.0 4.5 4.5 4.5 3.7 3.7 5.0

result 12 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

result 13 4.4 5.0 4.5 5.0 4.9 5.0 4.6 5.0

result 14 4.0 3.5 3.0 3.5 4.0 3.5 3.5 3.5

result 15 2.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 16 3.0 2.0 2.5 3.0 4.0 4.0 3.5 5.0
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result 17 3.5 4.0 4.7 5.0 5.0 5.0 4.9 5.0

result 18 3.5 4.0 3.5 5.0 4.0 3.0 3.0 4.0

result 19 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 20 4.0 4.2 4.3 4.7 4.6 4.1 4.4 4.5

result 21 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 22 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 23 4.2 3.8 3.8 4.0 4.0 4.5 4.3 4.2

result 24 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 25 4.8 4.8 4.8 4.8 4.8 5.0 4.8 4.8

result 26 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 27 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 28 5.0 4.9 5.0 5.0 4.9 5.0 5.0 4.9

result 29 4.9 5.0 4.9 4.9 4.9 5.0 5.0 4.9

result 30 4.0 4.0 4.0 4.0 5.0 5.0 4.0 5.0

result 31 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 32 4.6 4.8 4.6 4.6 4.4 4.6 4.6 4.6

result 33 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 34 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 35 4.5 4.2 5.0 5.0 5.0 4.4 4.2 5.0

result 36 5.0 4.0 4.0 4.0 5.0 4.0 4.0 4.0

result 37 4.3 5.0 4.8 4.8 5.0 4.7 5.0 4.7

result 38 4.9 4.5 4.6 5.0 4.9 4.9 4.9 4.5

result 39 5.0 4.8 4.6 5.0 5.0 4.5 4.5 4.7

result 40 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

result 41 3.4 4.2 3.5 4.4 3.9 3.7 4.0 4.5

result 42 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

total (/210) 183.7 190.4 189.2 194.6 200.3 192.3 191.2 196.1

lame 3.90a7
mode:

cbr192
MS

GPSY-
CHO)

abr224
MJ

nspsytune
nssafejoint

--r3mix dm-xtr

MPEG+
-insane
-nmt 99
-tns99

lowpass
19.5

dm-ins
cbr256

nspsytune
nssafejoint

dm-std

Table H-1: Results from the high quality audio test

H.4 Discussion

Post-screening of results is desirable (as discussed in [ITU-R BS.1116, 1997]). In this test the

hidden reference reveals that some listeners are simply guessing. Interestingly, removing these

listeners from the test does not change the ranking of the codecs, or even the spacing signifi-

cantly. This suggests that, over the number of listeners who took part (42), the random guesses

from listeners who cannot accurately detect any difference between the original and coded

samples have cancelled. For this reason, and because the hidden reference is not identical to
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the original, no filtering of results is carried out. The totals at the foot of the above table are

used in Chapter 8.

Several statistical analyses have been attempted using the above data, to try to define the sig-

nificance of the difference between the eight extracts. At 95% confidence, cbr192 is worse

than the others, and MPC is better, but no other results are significant at the 95% confidence

level. Reducing the confidence level to 68%, reveals further trends, but statistically these

differences between codecs are less significant.
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Medium quality listening test

I.1 Overview

This test is described in [Miyaguchi, WEB]. The results of this test are included here by per-

mission of Darryl Miyaguchi (ff123). 16 listeners took part and one failed to differentiate

between the codecs. No hidden reference is included in this test, but a low quality anchor is

included that is significantly worse than the other codecs. One listener failed to score this

codec as the worst on test. Thus, 14 listeners are classified as “reliable”. The overall codec

ranking is unchanged by excluding the “unrealiable” listeners, so data from all 16 listeners is

averaged to produce the Mean Opinion Scores used in Chapter 8.

I.2 Procedure

Six different codecs are compared at a nominal bitrate of 128 kbps. The codecs are as follows:

Format

Type

Encoder Name

and Version
Settings (128 kbit/s) Decoder Name and Version

MP3 Lame 3.89beta
--abr 134 -h --nspsytune --athtype

2 --lowpass 16 --ns-bass -8

in_mp3.dll (version 2.75i)

default mp3 decoder within

Winamp 2.76

MP3
Xing within

AudioCatalyst 2.1

128 kbit/s, high frequency mode

disabled, simple stereo disabled

in_mp3.dll (version 2.75i)

default mp3 decoder within

Winamp 2.76

AAC
Liquifier Pro 5.0.0

Beta 2, Build 24

streaming 128, audio bandwidth

set at 17995 Hz .
in_lqt.dll (v. 1.055)
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MPC
mppenc.exe

version 1.7.9c

-radio -ltq_gain 10 -tmn 12 -nmt

4.8
mppdec.exe 1.7.8c

WMA8

Windows Media

Player 7.1 (version

7.01.00.3055);

wmadmoe.dll

version 8.0.0.0371

128 kbit/s

Windows Media Player 7.1

(version 7.01.00.3055); output

captured by Total Recorder

Ogg

Vorbis

Oggdrop RC2 for

Windows 32
128 kbit/s

in_vorbis.dll: Nullsoft Vorbis

Decoder v1.13c (RC1)

The Xing MPEG-1 layer III codec is the low quality anchor. This mp3 encoder is optimised for

speed, rather than quality, and gives significantly poorer quality than other mp3 encoders at

this bitrate.

The stimulus consists of a single audio extract from “Git Along Little Dogies” by Dave Grusin

from the album Discovered Again. This extract is chosen because it is not especially difficult

to code, and may give an indication of the “typical” performance of these audio codecs at

128 kbps.

Each listener graded each extract using the 5-point continuous grading scale described in

Chapter 2. Most listeners used a single decimal place, and many commented in their feedback

that they had used ABX testing to ensure that any differences they perceived were not imag-

ined.

The decoded audio extracts employed in the test are included on the accompanying CD-ROM.

Thus, the test is verifiable and repeatable. The reader may wish to audition the audio extracts

to gauge the magnitude of the audible errors that are presented within this subjective test.
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I.3 Results

Table I-1: Results from the medium quality audio test

I.4 Discussion

Due to the lack of a hidden reference in this test, a sophisticated analysis is suggested in [Mi-

yaguchi, WEB], to determine the significance of the results. The analysis takes the form of a

Friedman Non-Parametric Analysis [Meilgaard et al, 1999]. This analysis takes the implied

rankings of each codec by each listener, and determines the statistical probability that each

codec is audible different from each other codec. A confidence level of 95% is chosen. The

result shows that there are three groups of codecs, which are ranked in the following order:

mpc = 75.0 aac = 71.5 wma8 = 50.5 ogg = 49.5 lame = 44.5 xing = 24.0

Thus, it is not possible to state that WMA8 is better than lame at the 95% confidence level.

This analysis is interesting, but does little more than add a statistical basis to the differences

that are apparent in the mean opinion scores. The averages in table I-1 are used in Chapter 8.
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Original difference perception unit

J.1 Overview

The difference perception unit of the monophonic model described in Chapter 5 is the second

version of this device. The original version was published in [Robinson and Hawksford, 1999].

This original version was oversensitive to the onset of sounds, hence the new version was

developed. However, since the new version is insensitive to differences in real music signals,

the old version was re-examined in Chapter 8. The following details of the original difference

perception unit are taken directly from [Robinson and Hawksford, 1999]. “The model” became

the monophonic model described in Chapter 5. The calibration, validation, and testing of the

model with the older detector are also included in this appendix.

J.2 Perceiving a difference

So far, we have simulated the passage of sound

through the ear canal and cochlea – see Figure

3.1(a-c). The output of the auditory model is a

signal analogous to that transmitted along the

auditory nerve. If two signals are processed

independently by the auditory model, the

difference between the two resulting outputs

will be related to the perceived difference

between the two signals. This concept is illus-

Figure J.1: General method for calculating

the perceived difference between two audio

signals
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trated in Figure J.1. The next task is to determine the processing that is necessary to yield an

accurate indication of perceived difference.

The outputs of the model are n time varying signals, where n is the number of gammachirp

filters. Hence forth, n will be referred to as the number of bands. Calculating the perceived

difference will involve comparing the signals in each band, and determining at what level these

differences would become audible to a human listener. In the following sections, the value of

this internal threshold level will be set, such that the “perception” of the model matches that of

a real human listener.

[It is important to note the difference between the internal threshold level, set in the model,

and the threshold condition of a psychoacoustic test. The former is a single number, which will

determine when the model will flag an “audible” difference. The latter is the measured level,

usually in dB, at which a real human listener is just able to perceive some sound in a particular

situation (e.g., in noise, in the presence of another similar sound, etc.). The latter is different

depending on the task we are discussing. For example, the threshold condition is 0 dB SPL for

detecting a 2 kHz tone in silence, but 80 dB SPL for detecting a 2 kHz tone in the presence of

65 dB SL noise. However, if we compare two signals which are on the threshold of being

audibly different from each other (e.g. the 65 dB noise in isolation, with the 65 dB noise +

80 dB tone), then the perceived difference calculated by the model should be the internal

threshold level.]

The first step is to determine how the perceived difference should be calculated. If calculated

incorrectly (i.e. in a manner that does not reflect the workings of the auditory system), then it

will be impossible to set a single internal threshold value across a variety of tests.

J.2.1 Calculating the perceived difference by simple subtraction

One possible method of calculating the perceived difference is to simply take the difference

between the two sets of outputs from the auditory model (one set for each signal under test).

This will yield a time-varying calculated perceived difference (CPD) signal for each auditory

band.
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This attractively simple method of determining the CPD fails to match human perception. This

fact can be demonstrated by using the model to simulate some tests with have previously been

carried out by human listeners, and comparing the results.

J.2.1.1 Testing the validity of this approach

The threshold of perceiving a difference between two signals is known for a wide variety of

possible signals, from various psychoacoustic experiments using human subjects. If the differ-

ence between two signals is greater than this threshold value, then a human listener will

perceive a difference. If it is less, then the difference, though present, will be imperceptible.

The simplest differentiation experiment is that of discriminating between the level of two

tones. A human listener can detect a 1 dB level difference between two tones of the same

frequency, but any smaller change in level is undetectable. If, in Figure J.1, signal A is a 60 dB

sine wave, and signal B is a 61 dB sine wave, then the calculated perceived difference (CPD)

represents a just detectable difference, and allows us to set the internal threshold CPD. If the

CPD fails to reach this value during any subsequent test, then the difference can be said to be

imperceptible, whilst if the CPD exceeds this value, the model has “perceived” a difference.

As our model claims to represent part of the human auditory system, it might be expected that

this threshold CPD value would be obtained at the threshold condition of any difference detec-

tion task. However, this is not the case.

Simulating the tone masking noise experiment detailed in [Moore et al, 1998], signal A is the

tone in isolation, and signal B is the tone plus noise at the threshold (just audible) level. The

resulting CPD peaks at twice that obtained in the previous experiment. However, the mean

CPD over 1 second in both experiments is almost identical. This indicates that some form of

temporal averaging is needed.

Simulating the temporal masking experiment detailed in [Zwicker, 1984], signal A is a burst of

noise, and signal B is the same burst of noise followed by a short tone at the threshold level.

The resulting CPD peaks at a level similar to the first experiment, but the mean CPD over 1

second is much lower than the previous two, because the difference is isolated to within a few

milliseconds.
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In a fourth test condition, signal A and signal B are two random noise sequences. These are

perceptually identical, but have different waveforms. The resulting CPD is much greater (by an

order of magnitude) than the CPD at threshold in any other experiment.

Thus, we see that the CPD calculated by simple subtraction is not a good indicator of human

perception. Modelling the auditory periphery alone is insufficient to account for what humans

can and cannot hear, and a further stage of processing is needed.

J.2.2 Calculating the perceived difference by integration

In our auditory model, we have modelled the functionality of the actual physiology found

within the human ear. Modelling the subsequent cognitive process in this way is beyond the

scope of this research (though others have taken this path; see [Theide et al, 1999]). However,

the discrepancies described in the previous section can be dealt with without a complex cogni-

tive model.

Rather than examining the CPD on a sample by sample basis, and declaring an audible differ-

ence whenever the CPD peaks above a threshold value, the CPD can be summed over time.

Then, a threshold area can be defined, and whenever this area is exceeded within a certain

time interval, a difference will be perceived. This will make the CPD threshold consistent

between the first two experiments detailed in the previous section.

If this mechanism alone were to compensate for the misleadingly high CPD resulting from two

perceptually identical noise signals, the time constant would need to be in excess of 200 ms.

This would preclude the detection of any temporal masking effects, and a time constant of

20 ms is found to be more realistic. Therefore, a second mechanism is needed to account for

our inability to differentiate one noise signal from another.

J.2.3 Adjusting the perceived difference according to the variance of the
signal

The discrepancy in the CPD figure obtained from two sequences of random noise is due to the

signal in any given band varying dramatically from moment to moment. The listener would

need a perfect auditory memory to record each moment, and compare it with the corresponding

moment in the second noise signal. This is exactly what the model is doing, hence it predicts

perceived differences, but this is beyond the capabilities of the human auditory system. In
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effect, the more complex the signal, and the more the signal is varying in any given band, the

less sensitive we will be to any differences.

To simulate this, the CPD is scaled by the inverse of the variance of the signal in each band.

The actual process is shown in Figure J.2, as follows:

1. The variance of the output of the auditory model is calculated for each signal over a

20 ms period

2. The lower of the two values is chosen

3. Brief peaks in the variance are suppressed

4. The variance signal is low pass filtered with a time constant of 1.4 ms

5. This signal is summed over 100 ms

6. The CPD is scaled by 1/(1+30*the resulting figure)

The new CPD should indicate whether a human listener would perceive any difference be-

tween the two signals, by reference to a single known CPD threshold value, which represents

human threshold in any task. Also, larger CPD values should indicate that a human listener

would perceive a greater difference between the two signals. We will test the first hypothesis

in the following section.

Figure J.2: actual method for calculating the perceived difference between two audio

signals
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J.3 Validation of the model

J.3.1 Psychoacoustic tests

The following series of psychoacoustic tests were simulated via the model.

Experiment source threshold condition Fig. CPD below above

Tone masking noise

(simultaneous)

[19] 1 k  tone  @  81 dB

80 Hz wide 1k noise @ 85dB

8 25.2 18.5 31.5

Noise masking tone

(post-masking)

[20] 200 ms, 80 dB white noise

50 ms delay, 31 dB  2 k tone

9 26.3 20.1 33.8

Level differentiation [16] 1 dB level difference 10 25.7 5.1 78.0

Random Noise -- 11 20.5 28.2

Table J.1: details of psychoacoustic tests simulated via the model at threshold

Experiment name of the psychoacoustic test simulated
Source reference to the results of that experiment on human subjects
Threshold Cond. actual threshold simulated via model
Fig. Figure number showing time varying CPD value for threshold condition
CPD peak calculated perceived difference at threshold condition in target band
Below peak CPD obtained at 3 dB below threshold (for masking expts.)
Above peak CPD obtained at 3 dB above threshold (for masking expts.)

In the level differentiation test, the below threshold condition consisted of a level difference of

0.2 dB, whilst the above threshold condition consisted of a level difference of 3 dB.

In the random noise test, the below threshold condition consisted of two sequences of percep-

tually identical random noise, with non-identical waveforms. For the above threshold

condition, the level of one signal was raised by 3 dB.

Examining the results in Table J.1, we see that for each of the simulated tests, the “CPD at

threshold” is in close agreement. This shows that, in determining a “just detectable” difference,

the CPD correlates well with human perception. The CPD between the two noise signals is

also in accordance with human perception.
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Thus, the model is shown to accurately predict human perception in a range of psychoacoustic

tests.

J.3.2 Codec assessment

The motivation behind developing a model of human perception is to create an objective

method of assessing audio codecs. It has been shown that the model can predict the threshold

level in a range of psychoacoustic listening tests, but can it perform equally well with real

world audio signals? In particular;

1. Can the model accurately determine if the difference between two complex audio signals is

perceptible?

2. Can the model quantify how perceptible this difference will be?

Figure J.3: CPD at threshold

(a) tone masking noise; (b) temporal masking; (c) level differentiation; (d) noise



ORIGINAL DIFFERENCE PERCEPTION UNIT

274

In assessing an audio codec, the first issue is analogous to determining the transparent bit-rate

– the level of data-reduction which, for a given coding scheme, produces an audio signal that is

perceptually identical to the original. The second issue relates to determining how “bad” a

codec sounds when its performance is worse than “transparent”.

J.3.2.1 MPEG-1 layer II codec assessment

To test how accurately the model addresses these issues, we will use the model to assess the

quality of some audio streams generated by an MPEG-1 layer II codec, operating at a variety

of bit-rates. It is known from previous subjective tests that the performance of this codec is

“good” (1 on the diff-grade scale [Brandenburg and Bosi, 1997]) when operating at 160 kbps,

and near “transparent” (0 on the diff-grade scale) at 192 kbps. Below 160 kbps, the perform-

ance of this codec becomes audibly worse, whilst above 192 kbps the codec is perceptually

transparent.

The audio sample is taken from LINN CD AKD 028, Track 4, 0:27-0:29, a piece of vocal jazz.

This extract was chosen because it was quite difficult to code. A more complete “listening”

test, whether with real human subjects, or a perceptual model, would include many diverse

extracts. However, for our purposes, one (difficult to code) example will be sufficient.

The extract was coded at a variety of bit rates from 112 kbps to 256 kbps. The MPEG streams

were decoded, then time aligned with the original by cross-correlation.
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Each coded stream was analysed by the model (Figure J.2), and compared with the original.

The result is a time varying CPD output from each band (see Figure J.4). Table J.2 lists the

Figure J.4: Calculated perceived difference for an audio signal coded using MPEG-1

layer II

Only 15 of the 25 bands are shown. The dashed lines show the threshold of audibility in each band (where

CPD > 25).



ORIGINAL DIFFERENCE PERCEPTION UNIT

276

largest CPD (across all bands) during each extract, and also the number of bands in which the

CPD exceeded the “perceptible” threshold value.

Bit-rate Peak CPD (band) Number of bands in
which peak CPD>25

Can a human hear
any difference?

256

192

160

128

112

13.8 (14)

16.0 (9)

26.6 (19)

46.6 (19)

63.0 (19)

0

0

2

9

11

None

None

Slight

Much

More

Table J.2: MPEG 1 layer 2 assessment test

Bit-rate the kilo-bit per second at which the extract was coded

Peak CPD the highest CPD during the extract in any band

(Band) the band number in which the above occurred

No. bands CPD>25 how many bands a difference was perceived in

Hear any difference in a real listening test, how great a difference can a human subject

perceive between the particular bit-rate, and the original extract.

The results in Table J.2 indicate that, in this particular test, the model predicted human percep-

tion very well. At the two bit-rates where a human listener perceives no difference between the

original and coded signals, the model does likewise. At 160 kbs, where the human perception

is of a signal that is perceivably different from the original, but that difference is not annoying,

the model predicts that a difference is just perceptible (a peak CPD of 26.6 compared to a

threshold of 25). At the lower bit-rates, the model predicts that the difference between the

original and coded signals will be well above threshold. The human perception is that the

difference is very audible, hence again the model accurately predicts human perception.

J.3.2.2 Other codec assessments

Similar tests were performed to assess the performance of other codecs via the model, and to

compare the results given by the model, with those given by human listeners.
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MPEG-1 layer III coded audio was successfully assessed by the model in accordance with

human perception.

The model incorrectly assessed the Microsoft audio codec, which maintains a better frequency

response, at the expense of poorer temporal resolution. The model predicted an audible differ-

ence where human listeners could hear none. Also, where there was an audible difference, the

severity of the difference was greatly overestimated by the model in comparison to the human

perception of the difference. This affected comparisons with the MPEG codecs, which were

themselves correctly assessed. The model indicated that MPEG-1 layer II compression at

128 kbps sounded better than the Microsoft audio codec at 64 kbps, but human listeners per-

ceived the reverse. Though both are audibly far from transparent, the temporal smearing of the

Microsoft audio codec was preferred by all listeners compared to the frequency “drop outs”

associated with the MPEG-1 layer II codec.

The problem seems to lie in the models emphasis on the onset of sounds. This feature is found

within the human auditory system, and to the same extent. However, it seems that some later

process must suppress these onsets in certain situations, to account for our tolerance of the

temporal-smearing distortion encountered in the final example. This will be the subject of

further research.

J.4 Conclusion

An auditory model has been described that simulates the processes found within the human

auditory system. The output of this model is analysed to detect perceptible differences between

two audio signals. The model was found to correctly predict human perception in a range of

psychoacoustic tests. The perception of a range of coded audio extracts was also correctly

predicted by the model. Finally, the model was shown to be over-sensitive to temporal errors in

the input signal, which are inaudible to human listeners due to pre-masking.
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Replay Gain – A Proposed Standard

One possible application of the model is as a perceptual loudness meter. The outer and middle

ear processing, and the amplitude dependent gammachirp filter bank are required for this task.

The peak amplitude of the signal within each band is used as the excitation in the model of

[Moore et al, 1997]. This transforms Moore’s analytical model into a time-domain model.

The output is a time-domain loudness surface. The instantaneous area under this surface repre-

sents the perceived loudness, but for a real music signal, the integration of this area does not

correctly predict the overall loudness of the whole track. Instead, the 95th percentile value of

the complete set of instantaneous perceived loudness measures gives a good indication of the

overall perceived loudness of the whole track.

If this calculation is carried out for a real music signal, the accuracy of the preceding model is

redundant, since the statistical processing at the end is significantly more important than the

auditory model itself. This raises the possibility of vastly simplifying the whole process, so that

it can run at faster than real time on a typical PC, whilst still yielding a reasonably accurate

prediction of overall perceived loudness.

This approach forms the basis of the replay gain standard, which is described in this appendix.

This is currently published on the world wide web at http://www.replaygain.org/
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Replay Gain – A Proposed Standard

K.1 Introduction

Not all CDs sound equally loud. The perceived loudness of mp3s is even more variable. Whilst

different musical moods require that some tracks should sound louder than others, the loudness

of a given CD has more to do with the year of issue or the whim of the producer than the in-

tended emotional effect. If we add to this chaos the inconsistent quality of mp3 encoding, it is

no wonder that a random play through your music collection can have you leaping for the vol-

ume control every other track.

There is a remarkably simple solution to this annoyance, and that is to store the required replay

gain for each track within the track. This concept is called "MetaData" – data about data. It is

already possible to store the title, artist, and CD track number within an mp3 file using the ID3

standard. The later ID3v2 standard also incorporates the ability to store a track relative volume

adjustment, which can be used to "fix" quiet or loud sounding mp3s.

However, there is no consistent standard method to define the appropriate replay gain which

mp3 encoders and players agree on, and no automatic way to set the volume adjustment for

each track – until now.

The Replay Gain proposal sets out a simple way of calculating and representing the ideal re-

play gain for every track and album.
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K.1.1 Perceived Loudness

The perceived loudness of an audio track is a combination of several factors. These include the

audio data stored on the CD, the position of the listener’s volume control, the characteristics of

the listener’s CD player, amplifier and speakers, and the listener him or herself.

The position of the volume control, and characteristics of the CD player, amplifier and speak-

ers combine to yield an overall system gain. This gain can be calibrated, so that a known digi-

tal signal level on a CD will yield a known real world sound pressure level. However, this cali-

bration is rarely carried out in the home listening environment.

Audio engineering experience suggests that the individual listener can be the most variable and

unpredictable component a typical audio system. However, “expert” listeners are often in re-

markable agreement as to how loud a given audio track should be reproduced. For most acous-

tic music, this corresponds to the loudness of the original performance. For other types of mu-

sic, it is difficult to define the origin of this preference, but a consistent preference (to within

one or two dB) is often observed across many listeners. For this reason, the listener can be re-

garded as the most predictable component in this chain.

Surprisingly, the least predictable factor is the audio data on each individual CD. Compare a

pop single to a classical album, and the audio data would suggest that the former should be

15 dB louder than the latter. This is clearly nonsense, unless Britney Spears really does sing

louder than a full symphony orchestra.

Armed with a volume control, good taste, and common sense, the listener must correct for

these unwanted differences in loudness between different discs.

This paper suggests an alternative, which will leave the listener free to enjoy the music. The

basic concept is outlined, and an algorithm for calculating the perceived loudness of an audio

track is described in detail. The proposed data format is specified, and the requirements for

audio players are explained in depth. This entire proposal focuses on the world of PC audio,

since everything described in this paper can be accomplished in software. However, the rele-

vance of this proposal to new audio formats should not be underestimated. The author strongly

suggests that the meta data defined herein would be a valuable addition to the DVD-audio and

SACD specifications.
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K.1.2 Definitions

Before continuing, it is necessary to define some terms. These details will be expanded in the

following sections.

The Replay Gain is the gain of the entire system, which links the digital signal on a CD to the

real world sound pressure level.

All Replay Gain Adjustments are specified relative to SMPTE RP 200. Hence, a Replay Gain

Adjustment of -10 dB suggests that the system gain should be reduced by 10 dB relative to

SMPTE RP 200. In software, this may achieved by scaling the digital data, at the expense of

some SNR.

The ideal loudness is usually equal to the loudness of the original acoustic event. As discussed

above, this can often be judged by experienced listeners to within one or two dB.

The Audiophile Replay Gain Adjustment is the gain adjustment, relative to SMPTE RP 200,

which will yield the ideal loudness for a given track. If the track is mastered via a system cali-

brated to SMPTE RP 200, then the Audiophile Replay Gain Adjustment will be 0 dB.

The Radio Replay Gain Adjustment is the gain adjustment, relative to SMPTE RP 200, which

will make the overall perceived loudness for a given track equal to 83 dB SPL. Thus, the Radio

Replay Gain Adjustment will cause all tracks to sound equally loud.

ReplayGain is the name of the algorithm described within this paper. It calculates the overall

perceived loudness of an audio track, and from this calculates a Radio Replay Gain Adjust-

ment. It can also guess a value for the Audiophile Replay Gain Adjustment, but this value is

only approximate.

The Replay Gain Standard is defined in this paper, and on the website www.replaygain.org,

which together form the Replay Gain Proposal.

Finally, the signal level usually refers to the magnitude of the digital audio data. Without speci-

fying the Replay Gain, this says nothing about the perceived loudness.



REPLAY GAIN – A PROPOSED STANDARD

282

K.1.3 Basic Concept

The following basic method is suggested to equalise the loudness of all audio tracks.

1. Calculate the perceived loudness of each track

2. Convert this to a suggested Replay Gain Adjustment

3. Store this value within the header of the audio file

4. Adjust the volume of each track accordingly on replay

The Replay Gain Adjustment is a suggested gain adjustment for each track. Players can scale

the audio data by this adjustment in order to achieve a consistent perceived loudness across all

tracks.

The reference gain yields a real world loudness of 83dB SPL, as defined in the SMPTE RP 200

standard. If the Replay Gain Adjustment for a given track is -12dB, this means that the track is

relatively loud, and the gain should be reduced by 12dB, ideally to 71dB. Players that under-

stand the Replay Gain Standard will do this automatically.

Steps one and two can be carried out automatically, using the ReplayGain algorithm described

in this paper. Alternatively, a human listener (e.g. the record producer or mastering engineer)

may specify the ideal Replay Gain Adjustment relative to SMPTE RP 200, and this value can

be stored instead.

K.2 “Radio” and “Audiophile” gain adjustments

Under some listening conditions, it is useful to adjust every track to sound equally loud. How-

ever, it is often desirable to leave the intentional loudness differences between tracks in place,

whilst still correcting for unmusical and annoying changes in loudness between discs.

To account for these two separate listening conditions, the Replay Gain Proposal suggests that

two different gain adjustments should be stored in the file header, as follows.

K.2.1 "Radio" Replay Gain Adjustment

This will cause all tracks to sound equally loud (as they typically do on the radio, hence the

name). If the Replay Gain is calculated on a track-by-track basis (i.e. an individual ReplayGain

calculation is carried out for each track), this will be the result. This is something that the Re-



REPLAY GAIN – A PROPOSED STANDARD

283

playGain algorithm described in this paper does very well. An audio demonstration is included

on the accompanying CD-ROM.

K.2.2 "Audiophile" Replay Gain Adjustment

The problem with the "Radio" setting is that tracks which should be quiet will be brought up to

the level of all the rest. For casual listening, or in a noisy background, this can be a good thing.

For serious listening, it would be a nuisance. For example, it would be inappropriate to raise

the volume of a flute solo to match that of a symphony orchestra.

To solve this problem, the "Audiophile" setting represents the ideal listening gain for each

track. ReplayGain can have a good guess at this too, by reading the entire CD, and calculating

a single gain adjustment for the whole disc. This works because quiet tracks will remain qui-

eter than the rest of the disc, since the gain won't be changed for each track. It still solves the

basic problem of annoying, unwanted level differences between discs because quiet or loud

discs are still adjusted overall. This means that a typical pop CD that's 15 dB louder than a

classical CD will be brought into line.

ReplayGain will fail to calculate a reasonable “audiophile” setting for an entire CD of quiet

music. Instead, it will raise it to an average loudness. This is why the "Audiophile" Replay

Gain Adjustment must be user adjustable. The ReplayGain whole disc value represents a good

guess, and should be stored in the file. Later, the user can tweak this value if required.

If the file has originated from the artist (e.g. download from mp3.com), then the "Audiophile"

setting can be specified by the artist. Naturally, the user is free to change this value if they de-

sire.

K.3 Replay Gain Adjustment Calculation

The following ReplayGain algorithm is suggested to calculate the perceived loudness, and

hence the appropriate Radio Replay Gain Adjustment value for a given audio track. The stages

of the calculation are outlined below, and discussed in detail in the following sections.
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EQUAL LOUDNESS FILTER

The human ear does not perceive sounds of all frequencies as having equal loudness. For ex-

ample, a full scale sine wave at 1 kHz sounds much louder than a full scale sine wave at

10 kHz, even though the two contain identical energy. To account for this, the signal is filtered

by an inverted approximation to the equal loudness curves (sometimes referred to as Fletcher-

Munson curves).

RMS ENERGY CALCULATION

Next, the energy during each moment of the signal is determined by calculating the Root Mean

Square of the waveform every 50ms.

STATISTICAL PROCESSING

Where the average energy level of a signal varies with time, the louder moments contribute

most to our perception of overall loudness. For example, in human speech, over half the time is

silence, but this does not affect the perceived loudness of the talker at all. For this reason, the

95th percentile is chosen to represent the overall perceived loudness of the signal.

CALIBRATION AND REFERENCE LEVEL

A suitable average replay level is 83 dB SPL. A calibration relating the energy of a digital sig-

nal to the real world replay level has been defined by the SMPTE. Using this calibration, the

current signal level is subtracted from the desired (calibrated) level to give the Replay Gain

Adjustment.

Each stage of this calculation will now be described in detail.
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K.3.1 Equal Loudness Filter

Figure K.1 shows the Equal Loudness Con-

tours, taken from [Robinson and Dadson,

1956]. The original measurements were car-

ried out by Fletcher and Munson in 1933, and

the curve often carries their name.

The lines represent the sound pressure required

for a test tone of any frequency to sound as

loud as a test tone of 1 kHz. Examine the line

marked "60" - at 1 kHz, the line marked "60"

is at 60 dB. Following the "60" line down to

0.5 kHz, the value is about 55 dB. This shows that a 500 Hz tone at 55 dB SPL sounds as loud

to a human listener as a 1 kHz tone at 60 dB SPL.

If every frequency sounded equally loud, then this graph would consist of a series of horizontal

lines. Since it is very far from this ideal, a filter is required to simulate this characteristic of the

human auditory system.

Where the lines curve upwards, humans are

less sensitive to sounds of that frequency.

Hence, the filter must attenuate (reduce)

sounds of that frequency in order to simulate

the response of the human auditory system.

The ideal filter will be the inverse of the equal

loudness response. Unfortunately, this re-

sponse varies with loudness. It would signifi-

cantly complicate the calculation to use a dif-

ferent filter for different amplitude audio sig-

nals, and the performance gains would be

questionable. For this reason, a weighted aver-

age of the responses is chosen as the target filter response, as shown in Figure K.2.

Figure K.1: Fletcher Munsen curves

Figure K.2: Target Response – The

Average Inverse Equal Loudness Curve
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A common approximation to the frequency response of the human ear is the "A" Weighting

curve [IEC 1672, 1996]. Figure K.3 shows the response of a 2x7 coefficient IIR filter designed

to match the A weighting curve. As can be seen from the graph, the A-weighting curve is only

an approximation to human hearing sensitivity, and is not sufficiently accurate for our pur-

poses. For example, at 15 kHz, the response passes 30 dB more energy than the ears of a hu-

man listener.

The "B" and "C" weighting curves are even less appropriate, as illustrated in Figure K.4 [Sin-

gleton, WEB]. Since none of these standard weighting curves gives a suitable frequency re-

sponse, a custom filter is designed, as follows.

Figure K.3: Possible filter response: A-

weighting curve (red)

Figure K.4: Other possible filters: A, B,

and C-weighting curves

Figure K.5: IIR filter generated by

yulewalk.m

Figure K.6: Composition of final filter.

RED: Overall response
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MATLAB offers several functions to design FIR and IIR filters to match arbitrary amplitude

responses. Feeding the target response into yulewalk.m, and requesting a 2x10 coefficient IIR

filter gives the response shown in Figure K.5

At higher frequencies, this filter is an excellent approximation to the target response. However,

at lower frequencies, it is inadequate. Increasing the number of coefficients does not cause the

yulewalk function to perform significantly better.

One solution is to cascade the yulewalk filter with a 2nd order Butterworth high pass filter

having a high pass frequency of 150 Hz. The resulting combined response is close to the target

response, as shown in Figure K.6. This filter is used in ReplayGain.

K.3.1.1 Implementation

The MATLAB script equalloud.m generated the above graphs. It requires adsgn.m [Cou-

vreur, 1997] to generate the "A" weighting filter for comparison. The yulewalk and butter

functions are built in to MATLAB. The filter design function called by the MATLAB imple-

mentation of ReplayGain is equalloudfilt.m. For readers without access to MATLAB, a

text document containing all the filter coefficients is provided. All these files are included on

the accompanying CD-ROM.

K.3.2 RMS Energy Calculation

It is trivial to calculate the RMS energy over an entire audio file. For example, Cool Edit Pro

[Syntrillium, 2000] provides this information via its Analise:statistics box. Unfortunately, this

value does not give a good indication of the perceived loudness of a signal. Whilst it is closer

than that given by the peak amplitude, it is still less accurate than is required for the current

task. For this reason, the RMS energy is calculated on a moment by moment basis (as de-

scribed in this section), and this information is subsequently processed to yield the overall per-

ceived loudness (as described in Section K.3.3).

The audio data is partitioned into blocks, and the RMS value of the samples within each block

is calculated. The block length of 50 ms was chosen after studying the effect of values between

25 ms and 1 second. 25 ms is too short to accurately reflect the perceived loudness of some

sounds. Beyond 50 ms there is little change in performance (after statistical processing). For
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this reason, 50 ms was chosen. Alternatively, the mp3 frame length of 52 ms may be used for

convenience without significantly compromising the accuracy of the calculation.

K.3.2.1 Stereo Files

A suitable method to process stereo files was investigated, as the correct calculation was not

immediately obvious. It is possible to sum the two channels into a single channel before cal-

culating the RMS energy, but then any out-of-phase components cancel out to zero. This is not

the manner in which humans perceive such sounds, so it is not an appropriate solution.

One alternative consists of calculating two RMS values (once for each channel) and then add-

ing them. Unfortunately, a linear addition does not yield the same perceived loudness as lis-

tening to the two signals via loudspeakers. To demonstrate this, consider a mono (single chan-

nel) audio track. Replay this signal using one loudspeaker, and remember how loud it sounds.

Now replay the same track using two loudspeakers, and determine how large a signal is re-

quired to each speaker such that, overall, the perceived loudness is equal to the previous pres-

entation. A linear addition would suggest that the signal should be half as large, but the correct

value is approximately three-quarters, as determined experimentally.

The correct answer can be obtained if the means of the channel-signals are averaged before

calculating the square root. Possibly, this could be referred to as “Root mean mean square”. In

mixing desk terminology, this equates to "equal power" rather than "equal voltage" pan-pots. If

it is also assumed that any mono (single channel) signal will always be replayed over two

loudspeakers, a mono signal may be treated as a pair of identical stereo signals. Hence a mono

signal gives (a+a)/2 (i.e. a), while a stereo signal gives (a+b)/2, where a and b are the mean

squared values for each channel. The result is square rooted and converted to dB.

K.3.2.2 Implementation

In the MATLAB implementation, the RMS calculation is carried out by the following lines

(modified here for clarity) from ReplayGain.m:

% Mono signal: just process the one channel
if channels==1,

Vrms_all(this_block)=mean(inaudio(start_block:end_block).^2);
% Stereo signal: calculate average Vrms of both channels
elseif channels==2,

Vrms_left=mean(inaudio(start_block:end_block,1).^2);
Vrms_right=mean(inaudio(start_block:end_block,2).^2);
Vrms_all(this_block)=(Vrms_left+Vrms_right)/2;
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end
% Convert to dB
Vrms_all=10*log10(Vrms_all+10^-10);

In the last line, the addition of ten to the power minus ten (10^-10) prevents the calculation of

log(0) (which would give an error) during periods of digital silence. A level of approximately -

100 dB is calculated instead, which (on this scale) is below the noise floor of a 24-bit record-

ing.

10*log10(signal) is the same as 20*log10(square_root(signal)). Thus, the square root and the

conversion to dB are carried out in one simple step, without the use of a square root function.

K.3.3 Statistical Processing

Having calculated RMS signal levels for every 50 ms of the file, a single value must be calcu-

lated to represent the perceived loudness of the entire file. The histograms in Figure K.7 show

how many times each RMS value occurred in each file, for three different types of music.

The most common RMS value in the speech track was -45 dB (background noise), so the most

common RMS value is not a good indicator of perceived loudness. The average RMS value is

similarly misleading with the speech sample, and with classical music.

A possible method to determine the overall perceived loudness is to sort the RMS energy val-

ues into numerical order, and then pick a value near the top of the list. This suggestion is

analogous to one published in [Zwicker and Zwicker, 1991]. After computing the fluctuation

of perceived loudness with time, “Comparisons of the loudness perceived by many subjects

    

Figure K.7: Histograms of RMS energy values in 3 audio tracks

(a) speech (b) pop music (c) classical music
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have indicated that the average loudness corresponding to N50 (the loudness exceeded in 50%

of the time) gives an inadequate number, whereas N5 to N10 give adequate readings of what the

subjects really perceive.”

In the present case, the correct choice of percentile is one of the most critical aspects of Re-

playGain. Values from 70% to 95% were tested using a wide range of audio material. For

highly compressed pop music (e.g. Figure K.7 (b), where there are many values near the top),

the choice makes little difference. For speech and classical music, the choice makes a signifi-

cant difference. The value which most accurately matches human perception of loudness is

found to be around 95%, so this value is used by ReplayGain.

K.3.3.1 Implementation

Since MATLAB has a dedicated sort function, and simple indexing into arrays, this task is car-

ried out in two lines of code (from ReplayGain.m):

% Sort the Vrms values into numerical order
Vrms_all=sort(Vrms_all);
% Pick the 95% value
Vrms=Vrms_all(round(length(Vrms_all)*0.95));

...where length(Vrms_all)*0.95 is just an index 95% of the way into the sorted array. It must be

"round"ed because MATLAB will not accept non-integer array indexing.

K.3.4 Calibration and Reference Level

It is necessary to reference the RMS energy value to a real world sound pressure level. This is

essential for the Audiophile Replay Gain Adjustment, but it is also desirable for the Radio Re-

play Gain Adjustment.

The audio industry doesn't have a fixed standard for Replay Gain, but the movie industry has

worked to an 83 dB standard for years, called SMPTE RP 2000. (see [SMPTE, 1999] for full

details). This standard states that a single channel pink noise signal, with an RMS energy level

of -20 dB relative to a full scale sinusoid, should be reproduced at 83 dB SPL (measured using

a C-weighted, slow averaging SPL meter). The result is that every listener (or cinema) can set

their volume control to the same (known, calibrated) gain, and all film soundtracks are mixed

to sound best when reproduced at this gain.
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As an aside, it is worth noting that the 83 dB SPL reference wasn't picked at random. It was

chosen because it represents a comfortable average listening loudness, as determined by pro-

fessionals from years of listening. The reference level of -20 dB pink noise causes the cali-

brated average to be 20 dB less than the peak signal level. This yields 20 dB of headroom for

louder than average signals. If CDs were mastered to this standard, the average level would be

around –20 dB FS, which would leave lots of room for the dramatic peaks which make music

exciting. Such a standard has been proposed [Katz, 2000], but this has yet to gain wide accep-

tance within the audio industry. This standard defines three different calibrated monitor gains,

so it does not entirely solve the problem of different CDs requiring different gain settings.

The consequence of adopting a single calibrated monitor gain would be that all CDs should be

reproduced using the same gain setting, and they would all “sound right” at that setting. If you

(as a listener) didn't want to listen at that particular gain setting, you could always turn it down,

but all CDs would still sound equalling "turned down" at your preferred setting. You wouldn't

have to change the volume setting between discs.

In reality, CDs are not mixed or mastered using a single calibrated monitor gain, hence the

huge difference in perceived loudness between discs. However, ReplayGain aims to calculate

how much louder or quieter a CD is compared to one that has been mastered at the calibrated

gain, and adjust appropriately. This process involves a few assumptions, but can give good re-

sults. The process is as follows.

For the Radio Replay Gain Adjustment, it is assumed that the perceived loudness should aver-

age around 83 dB SPL. SMPTE RP 200 states that a -20 dB pink noise signal will yield 83 dB

SPL when replayed via a calibrated system. Hence, the average level of all recordings should

be around -20 dB. To achieve this, the reference pink noise signal is processed by ReplayGain

as outlined thus far, and the result is stored as ref_Vrms. For every audio track, the difference

between the calculated ReplayGain value for the track and ref_Vrms indicates how much the

signal should be scaled in order to match 83 dB perceived loudness. ReplayGain calculates

overall perceived loudness, so this adjustment will cause all audio tracks to have the same

overall perceived loudness as the reference pink noise signal.

There is one difference between the SMPTE calibration, and the ReplayGain calibration. The

SMPTE system calibration uses a single channel of pink noise (reproduced through a single

loudspeaker). However, music is typically played via two loudspeakers. Thus, though one
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channel of pink noise is required to calibrate the system gain, the ideal loudness of the music is

actually the loudness when two speakers are in use. For this reason, ReplayGain is calibrated to

two channels of pink noise, since this is the average loudness that the music should match. In

the implementation, a monophonic pink noise wavefile is employed, and ReplayGain auto-

matically assumes that is will be replayed over two speakers, as it does any monophonic file.

K.3.4.1 Implementation

ReplayGainScript.m loads a .wav file containing -20 dB FS pink noise from disk, and proc-

esses this via ReplayGain.m, storing the result as a reference. The reference wavefile is in-

cluded on the accompanying CD-ROM. The relevant lines of code are:

      % Calculate perceived loudness of -20dB FS RMS pink noise
      % This is the SMPTE RP 200 reference signal. It calibrates to:
      % 0dB on a K-20 studio meter / mixing desk
      % 83dB SPL in a listening environment
      [ref_Vrms]=replaylevel('ref_pink.wav',a1,b1,a2,b2);
        ...
      % Calculate the perceived loudness of the file using "replaygain" function
      % Subtract this from reference loudness to give Replay Gain Adjustment relative to 83 dB reference
      Vrms=ref_Vrms-replaygain(current_file,a1,b1,a2,b2);

This value is stored within the audio file header. It represents an adjustment relative to the

SMPTE RP 200 standard.

K.3.5 Overall Implementation

The entire ReplayGain algorithm has been implemented in MATLAB. The required files are

ReplayGainScript.m which batch processes .wav files, and ReplayGain.m which carries

out most of the calculation. EqualLoudFilt.m is required to generate the equal loudness filter

coefficients. All files are included on the accompanying CD-ROM.

K.4 Replay Gain Data Format

Three values must be stored in the Replay Gain header.

1. Peak signal amplitude

2. "Radio" = Radio Replay Gain Adjustment required to make all tracks equal loudness

3. "Audiophile" = Audiophile Replay Gain Adjustment required to give ideal listening

loudness
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If calculated on a track-by-track basis, ReplayGain yields (2). If calculated on a disc-by-disc

basis, ReplayGain will usually yield (3), though this value may be more accurately determined

by a human listener if required.

To allow for future expansion, if more than three values are stored, players should ignore those

they do not recognise, but process those that they do. If additional Replay Gain Adjustments

other than "Radio" and "Audiophile" are stored, they should come after "Radio" and "Audio-

phile". The Peak Amplitude must always occupy the first four bytes of the Replay Gain header

frame. The three values listed above (or at least fields to hold the three values, should the val-

ues themselves be unknown) are required in all Replay Gain headers.

The Replay Gain Adjustment must be between -51.0dB and +51.0dB. Values outside this

range must be limited to be within the range, though they are certainly in error, and should

probably be re-calculated, or stored as "not set". For example, trying to cause a silent 24-bit

file to play at 83 dB perceived loudness will yield a Replay Gain Adjustment of +57dB.

In practice, adjustment values from -23dB to +17dB are the likely extremes, and values from -

18dB to +2dB are more usual.

K.4.1 Bit format

Each Replay Gain value should be stored in a Replay Gain Adjustment field consisting of two

bytes (16 bits). Here are two example Replay Gain Adjustment fields:

       Radio Gain Adjustment              Audiophile Gain Adjustment

  0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1       0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0
  \___/ \___/ | \_______________/       \___/ \___/ | \_______________/
    |     |   |         |                 |     |   |         |
  name    |  sign       |               name    |  sign       |
  code    |  bit        |               code    |  bit        |
          |             |                       |             |
     originator         |                  originator         |
        code            |                     code            |
                   Replay Gain                           Replay Gain
                    Adjustment                            Adjustment

In the above example, the Radio Gain Adjustment is -12.5dB, and was calculated automati-

cally. The Audiophile Gain Adjustment is +2.0dB, and was set by the user. The binary codes

are defined in the following sections.
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K.4.1.1  Name code

000 = not set

001 = Radio Gain Adjustment

010 = Audiophile Gain Adjustment

other = reserved for future use

If space has been reserved for the Replay Gain in the file header, but no replay gain calculation

has been carried out, then all bits (including the Name code) may be zero.

For each Replay Gain Adjustment field, if the name code = 000 (not set), then players should

ignore the rest of that individual field.

For each Replay Gain Adjustment field, if the name code is an unrecognised value (i.e. not

001-Radio or 010-Audiophile), then players should ignore the rest of that individual field.

If no valid Replay Gain Adjustment fields are found (i.e. all name codes are either 000 or un-

known), then the player should proceed as if the file contained no Replay Gain Adjustment

information (see Section K.7).

K.4.1.2  Originator code

000 = Replay Gain unspecified

001 = Replay Gain pre-set by artist/producer/mastering engineer

010 = Replay Gain set by user

011 = Replay Gain determined automatically, as described in this paper

other = reserved for future use

For each Replay Gain Adjustment field, if the name code is valid, but the Originator code is

000 (Replay Gain unspecified), then the player should ignore that Replay Gain Adjustment

field.

For each Replay Gain Adjustment field, if the name code is valid, but the Originator code is

unknown, then the player should still use the information within that Replay Gain Adjustment

field. This is because, even if there is uncertainty as to how the adjustment was determined,

any valid Replay Gain Adjustment is more useful than none at all.
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If no valid Replay Gain Adjustment fields are found (i.e. all originator codes are 000), then the

player should proceed as if the file contained no Replay Gain Adjustment information (see

Section K.7).

K.4.1.3  Sign bit

0 = +

1 = -

K.4.1.4  Replay Gain Adjustment

The value, multiplied by ten, stripped of its sign (since the + or - is stored in the "sign" bit), is

represented in 9 bits. e.g. -3.1dB becomes 31 = 000011111.

K.4.2 Default Value

$00 $00 (0000000000000000) should be used where no Replay Gain has been calculated or

set. This value will be interpreted by players in the same manner as a file without a Replay

Gain field in the header (see Section K.7).

The values of xxxyyy0000000000 (where xxx is any name code, and yyy is any originator

code) are all valid, but indicate that the Replay Gain is to be left at 83 dB (0 dB Replay Gain

Adjustment). These are not default values, and should only be used where appropriate (e.g.

where the user, producer, or ReplayGain calculation has indicated that the correct Replay Gain

is 83 dB).

K.4.3 Illegal Values

The values xxxyyy1000000000 are all illegal, since they represent negative zero. These values

may be used to convey other information in the future. They must not be used at present. If

encountered, players should treat them in the same manner as $00 $00 (the default value).

The value $xx $ff is not illegal, but it would give a false synch value within an mp3 file. If this

value occurs, it is suggested the Replay Gain should be increased or decreased by 0.1 dB. This

change will be inaudible, and it will avoid any possible problems due to false synchronisation.
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K.5 Peak Amplitude Data Format

Scanning the file for the peak amplitude can be a time-consuming process. Therefore, it will be

useful to store this single value within the file header. This can be used to determine if the re-

quired Replay Gain Adjustment will cause the file to clip.

K.5.1 Data Format

The maximum peak amplitude (a single value) should be stored as a 32-bit floating point num-

ber, where 1=digital full scale. This typically yields 22-bit accuracy, which is more than suffi-

cient for the purpose.

K.5.2 Uncompressed Files

The maximum absolute sample value held in the file (on any channel) should be stored. The

single sample value must be converted to a 32-bit float, such that digital full scale is equivalent

to a value of 1.

K.5.3 Compressed files

Compressed audio does not exist as a waveform until it is decoded. Unfortunately, psy-

choacoustic coding of a heavily limited file can lead to sample values larger than digital full

scale upon decoding. However, it is likely that such values will be brought back within range

after scaling by the Replay Gain Adjustment. Even so, it is necessary to store the peak value of

a compressed file as a 32-bit floating-point representation, where +/-1 represent digital full

scale, and values outside this range would usually clip.

K.5.4 Implementation

For uncompressed files, the maximum values must be found and stored. For compressed files,

the files must be decoded using a fully compliant decoder that allows peak overflows (i.e. has

headroom), and the maximum value stored.

K.6 Replay Gain File Format

Each audio file format represents a unique situation. All audio files would benefit from the in-

clusion of Replay Gain information. Proposals for additional header information within two

popular audio file formats are given below.
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K.6.1 “mp3” file format

A suitable location for the Replay Gain header is within an ID3v2 tag, at the start of the mp3

file [Nilsson, WEB].1 Note that all ID3v2 tag frames are written in Big Endian Byte order.

The ID3v2 standard defines a "tag" which is situated before the data in an mp3 file. The origi-

nal ID3 (v1) tags reside at the end of the file, and contain six fields of information. The ID3v2

tags can contain virtually limitless amounts of information, and new "frames" within the tags

may be defined.

K.6.1.1 Replay Gain Adjustment frame

Following the format of the ID3v2 standard document, a new frame is suggested, thus:

<Header for 'Replay Gain Adjustment', ID: "RGAD">
Peak Amplitude $xx $xx $xx $xx
Radio Replay Gain Adjustment $xx $xx
Audiophile Replay Gain Adjustment $xx $xx

Header consists of:
Frame ID $52 $47 $41 $44 = "RGAD"
Size $00 $00 $00 $08
Flags $40 $00 (%01000000 %00000000)

In the RGAD frame, the flags state that the frame should be preserved if the ID3v2 tag is al-

tered, but discarded if the audio data is altered.

K.6.2 “wav” file format

The RIFF WAV format is defined by [IBM and Microsoft, 1991]. NOTE: .wav files use little

endian byte order.

The RIFF format is based around the concept of data chunks. Each chunk has the following

basic format: NAME,SIZE,DATA. Wave files always contain a WAVEfmt chunk, and a data

chunk. The WAVEfmt chunk contains information such as the number of channels, sampling

rate, bits per sample etc etc. The data chunk contains the actual audio data. The entire file is

contained within a RIFF chunk.

                                                  

1 A new tag format which will include the Replay Gain Adjustment information is proposed in [Van den Ber-

ghe, WEB], but is not discussed here.
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There are several other optional chunks, which may be placed between the WAVEfmt chunk,

and the data chunk. These include Cue and Playlist chunks.

The standard requires that software can successfully read .wav files containing unknown

chunks. Should an unknown chunk NAME be encountered, then the accompanying SIZE field

should be read, and the DATA field should be skipped. This means that new chunks can be

defined without breaking compatibility with legacy software.

K.6.2.1 Replay Gain Adjustment chunk

Following the format of the standard document, the format is extended thus:

       <WAVE-form> ->
              RIFF( 'WAVE'
                   <fmt-ck>               // Format
                   [<rgad-ck>]            // Replay Gain Adjustment
                   [<fact-ck>]            // Fact chunk
                   [<cue-ck>]             // Cue points
                   [<playlist-ck>]        // Playlist
                   [<assoc-data-list>]    // Associated data list
                   <wave-data>   )        // Wave data

        <rgad-ck> ->   rgad( <rPeakAmplitude:REAL>
                             <wAudiophileRgAdjust:WORD>
                             <wRadioRgAdjust:WORD> )

Here is the definition in plain English. A new chunk is defined, named "rgad" (Replay Gain

Adjustment). The size is eight bytes long. The first value stored is the Peak Amplitude (4-

bytes); the second value stored is the Radio Replay Gain Adjustment (2-bytes); the third and

final value stored is the Audiophile Replay Gain Adjustment (2-bytes).
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EXAMPLE .WAV HEADER

For clarification, there follows an example .wav header, containing the new rgad chunk. This

demonstrates the manner in which the "RIFF" chunk wraps around all the other chunks, and

also how each chunk starts with its name, followed by its size. The new "rgad chunk" is high-

lighted in light blue.

Start
Byte

Chunk Chunk title contents contents (HEX) bytes format

0 name "RIFF" 52 49 46 46 4 ASCII
4 size 176444 3C B1 02 00 4 uInt32
8 WAVE name "WAVE" 57 41 56 45 4 ASCII

12 name "fmt " 66 6D 74 20 4 ASCII
16 size 16 10 00 00 00 4 uInt32
20 wFormatTag 1 01 00 2 uInt16
22 nChannels 2 02 00 2 uInt16
24 nSamplesPerSec 44100 44 AC 00 00 4 uInt32
28 nAvgBytesPerSec 176400 10 B1 02 00 4 uInt32
32 nBlockAlign 4 04 00 2 uInt16
34

fmt

nBitsPerSample 16 10 00 2 uInt16
36 name "rgad" 72 67 61 64 4 ASCII
40 size 8 08 00 00 00 4 uInt32
44 fPeakAmplitude 1 00 00 80 3F 4 float32
48 nRadioRgAdjust 10822 46 2A 2 uInt16
50

rgad

nAudiophileRgAdjust 18999 37 4A 2 uInt16
52 name "data" 64 61 74 61 4 ASCII
56 size 176400 10 B1 02 00 4 uInt32
60

RIFF

data
waveform data ..... ..... 176400 Int16

In this example, the "rgad" chunk contains the following values:

• The "fPeakamplitude" value of 1 means that the digital data in the .wav file peaks at

digital full scale (equivalent to -32768 for this 16-bit file).

• The "nRadioRgAdjust" value of 110822 (0010101001000110) represents a -7.0dB Ra-

dio Replay Gain Adjustment, user set.

• The "nAudiophileRgAdjust" value of 18999 (0100101000110111) represents a -5.5dB

Audiophile Replay Gain Adjustment, user set.

See Section K.4 for an explanation of the calculation of each binary code.

The rest of the header information shows that this file is a standard 44.1kHz, 16bit, 2 channel

wavefile (i.e. CD audio quality). It runs for 1 second, and is 176458 bytes long.
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This extension to the .wav format has been tested for backwards compatibility using Winamp

[Nullsoft, 2001] and Cool Edit Pro [Syntrillium, 2000]. Both pieces of software correctly play

the .wav file, without incorrectly reading the new chunk as part of the audio data. Neither of

the programs understand the "rgad" chunk, and both simply ignore it.

K.7 Player Requirements

The player requirements are outlined below,

and discussed in detail in the following sec-

tions.

SCALE AUDIO BY REPLAY GAIN ADJUSTMENT

VALUE

The Player reads the Replay Gain value, and

scales the audio data as appropriate.

PRE-AMP

Most users who only play pop music will find

that the level has been reduced too far for their

liking. An optional boost of 6dB-12dB should

be included by default, otherwise users will

reject the entire concept. Knowledgeable users,

or those playing classical music, will disable

this. Some may even choose to decrease the

level. For user friendliness, this part should be

referred to as the "pre-amp".

CLIPPING PREVENTION

The player should, by default, apply hard lim-

iting (NOT CLIPPING) to any signal peaks that would go over full scale after the above two

operations. This should be user defeatable, so that audiophile users can choose to decrease the

overall level to avoid clipping, rather than limiting the signal.

Figure K.8: Artist’s Impression of a

possible Replay Gain compatible player

and control panel (adapted from [Nullsoft,

2001])
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In practice, the first two adjustments can be carried out in a single step, where each sample is

multiplied by a fixed amount. The clipping prevention is only required if the peak signal am-

plitude is above digital full scale after the first two steps.

Each stage of this processing will now be described in detail.

K.7.1 Scale audio by Replay Gain Adjustment value

K.7.1.1 Reading the Replay Gain

First, the player should determine whether the user requires "Radio" style level equalisation

(all tracks same loudness), or "Audiophile" style level equalisation (all tracks "ideal" loud-

ness). This option should be selectable in the Replay Gain control panel, and should default to

"Radio".

Then the player should read the appropriate Replay Gain Adjustment value from the file

header, and convert it back to its original dB value (see Section K.4, especially K.4.1.4, noting

the factor of ten).

The player should also read (or calculate) the Peak amplitude. This is required for Clipping

prevention, as described in Section K.7.3.

K.7.1.2 Scaling by the Replay Gain Adjustment

Changing the level of an audio signal simply means multiplying each sample value by a con-

stant value. This constant is given by:

      scale=10(replay_gain_adjustment/20)

Or, in words: ten to the power of (the Replay Gain Adjustment divided by 20).

After any such operation, it is good practice to dither the result. If this calculation and the pre-

amp are implemented separately, then dither should only be added to the final result, just be-

fore the result is truncated back to 16 bits. The bit-depth of the output should be equal to that

of the sound card, not the original file. For example, after Replay Gain Adjustment, an 8-bit

file should be sent to a 16-bit soundcard at 16-bit resolution.
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K.7.1.3 No Replay Gain information

Disabling Replay Gain control for tracks without Replay Gain information would cause these

tracks to be louder than the others, thus bringing back the original problem. If neither "Radio"

or "Audiophile" Gain Adjustments are set, or if the track does not contain Replay Gain infor-

mation, then the player should use an average of the previous ten Replay Gain Adjustments.

This represents the typical loudness of tracks in the users music collection, and is a much bet-

ter estimate of the likely Replay Gain than 0 dB, or no adjustment at all.

If the file only contains one of the Replay Gain Adjustments (e.g. Audiophile) but the user has

requested the other (Radio), then the player should use the one that is available (in this case,

Audiophile).

K.7.2 Player Pre-amp

The SMPTE calibration level suggests that the average level of an audio track should be 20 dB

below full scale. Some pop music is dynamically compressed to peak at 0 dB and average

around –3 dB. Hence, when the Replay Gain is correctly set, the level of such tracks will be

reduced by 17 dB. If the user is listening to a mixture of highly compressed and not com-

pressed tracks, then Replay Gain Adjustment will make the listening experience more pleasur-

able, by bringing the level of the compressed tracks down into line with the others. However, if

the user is only listening to highly compressed music, then they are likely to complain that all

their files are now too quiet.

To solve this problem, a Pre-amp should be incorporated into the player. This should take the

form of an adjustment to the scale factor calculated in the previous section. The default value

should be +6 dB, though some manufacturers may choose +9, +12 or +15 dB. A positive value

is chosen so that casual users will find little change to the loudness of their compressed pop

music (except that the occasional "problem" quiet track will now be as loud as the rest), while

power users and audiophiles can reduce the Pre-amp gain to enjoy all their music without dy-

namic compression.

If the Pre-amp gain is set to a high value whilst listening to classical music (or nicely produced

pop music), then the peaks will be compressed. However, this is the consistent policy of most

radio stations, and many listeners like this sound.
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K.7.2.1 Implementation

If Replay Gain Adjustment is enabled, the player should read the user selected pre-amp gain,

and scale the audio signal by the appropriate amount. For example, a +6 dB gain requires a

scale of 10(6/20), which is approximately 2. The Replay Gain and Pre-amp scale factors can be

multiplied together for simplicity and ease of processing.

K.7.3 Clipping Prevention

The signal may clip for three reasons.

1. In coded audio (e.g. mp3 files) a file that was hard-limited to digital full scale before en-

coding will often be pushed over the limit by the psychoacoustic compression. A decoder with

headroom can recover the signal above full scale by reducing the gain (for example [Leslie,

WEB]). Typical decoders simply allow the audio to clip.

2. Replay Gain will reduce the level of loud dynamically compressed tracks, and increase the

level of quiet dynamically uncompressed tracks. The average levels will then be similar, but

the quiet tracks will have higher peaks. If the user pushes the pre-amp gain to maximum

(which would take highly compressed pop music back to its original level), then the peaks of

the (originally) quieter material will be pushed well over full scale.

3. If a track has a very wide dynamic range, then the Replay Gain Adjustment may instruct the

player to increase the level of the track such that it will clip. This will occur for tracks with

very low average energy, but very high peak amplitude. The author would be interested to hear

of any recordings which cause clipping following Replay Gain Adjustment, with the pre-amp

gain set at zero.

There are two solutions to the problem of clipping. In situation 2 above, the user apparently

wants all the music to sound very loud. To give them their wish, any signal which would peak

above digital full scale should be limited at just below digital full scale. This is also useful at

lower pre-amp gains, where it allows the average level of classical music to be raised to that of

pop music, without introduction clipping distortion. This could be useful when making tapes

for use in an automobile. The exact type of limiting/compression is not defined here, but

something similar to the Hard Limiter found in Cool Edit Pro [Syntrillium, 2000] may be ap-

propriate, especially for popular music.
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The audiophile user will not want any compression or limiting to be applied to the signal. In

this case, the only option is to reduce the pre-amp gain (so that the scaling of the digital signal

is lower than that suggested by the Replay Gain Adjustment). In order to maintain the consis-

tency of level between tracks, the pre-amp gain should remain at this reduced level for subse-

quent tracks.

K.7.3.1 Implementation

If the Peak Level is stored in the header of the file, it is trivial to calculate whether the signal

will clip following the Replay Gain Adjustment and Pre-amp gain. If the signal will not clip,

then no further action is necessary. If the signal will clip, then either the hard limiter should be

enabled, or the pre-amp gain should be reduced accordingly before playing the track.

K.7.4 Hardware Solution

The above steps are appropriate for software players operating on the digital signal in order to

scale it. However, it is possible to send the digital signal to the DAC without level correction,

and to place an attenuator in the analogue signal path. The attenuator should be driven by the

Replay Gain Adjustment value. This implementation would maintain maximum signal to noise

ratio in the digital to analogue conversion stage.

K.8 Typical Results

The result of the ReplayGain Radio adjustment is demonstrated by an audio example included

on the accompanying CD-ROM. Replay Gain processing was applied to 25 audio tracks, and

5-10 seconds from each track were compiled into two files. The first file contains excerpts

from all tracks at their original level, whilst the second file contains the same excerpts after

Replay Gain correction, with 6 dB Pre-amp gain and Hard Limiting (i.e. suggested default

player settings).

The titles of the tracks, and calculated Radio Replay Gains and Radio Replay Gain Adjust-

ments, are shown in the following table. "Time" refers to the time at which an extract from that

track appears in the audio example.
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Time: Artist/CD – Track: Replay Gain: Adjustment:

0.00 The Tampera – Feel It (CD single) 67.0849 dB -15.9151 dB

0.04 Alanis Morissette - Head Over Feet 71.0121 dB -11.9879 dB

0.10 Celine Dion – Falling into you 70.5880 dB -12.4120 dB

0.19 Oasis - Wonderwall 68.0897 dB -14.9103 dB

0.25 Telarc CD80251 - Goldfinger 75.3096 dB -07.6904 dB

0.37 Telarc CD80183 - Moon River 87.9934 dB +04.9934 dB

0.53 Telarc CD80221 - Brief Encounter 77.4630 dB -05.5370 dB

1.15 Elvis - Fever 80.7907 dB -02.2593 dB

1.23 Oleta Adams - Get Here 76.0916 dB -06.9084 dB

1.32 HNF+RR test CD 2 - Track 01 (quiet speech) 92.8158 dB +09.8158 dB

1.38 HFN+RR test CD 2 - Track 03 (pop music) 80.7753 dB -02.2247 dB

1.46 HFN+RR test CD 2 - Track 19 (classical) 77.6900 dB -05.3100 dB

1.54 HFN+RR test CD 2 - Track 20 (classical) 80.7789 dB -02.2211 dB

2.01 HFN+RR test CD 2 - Track 22 (cannon) 101.1475 dB +18.1475 dB

2.05 Faure - Pavane 77.8484 dB -05.1516 dB

2.17 1812 Overture - Mercury Recording 70.5373 dB -12.4627 dB

2.25 Radio show (music - Basement Jaxx) 70.7456 dB -12.2544 dB

2.33 Radio show (DJ speech over music) 69.4228 dB -13.5772 dB

2.41 SQAM CD - Track 50 (Male Speech) 75.0974 dB -07.9026 dB

2.45 SQAM CD - Track 55 (Haydn Trumpet extract) 77.2643 dB -05.7357 dB

2.53 SQAM CD - Track 56 (Handel Organ extract) 75.0690 dB -07.9310 dB

3.04 SQAM CD - Track 57 (Bach Organ Extract) 91.5487 dB +08.5487 dB

3.11 SQAM CD - Track 58 (Sarasate Guitar extract) 81.7892 dB -01.2108 dB

3.19 SQAM CD - Track 59 (Ravel Violin extract) 80.8753 dB -02.1247 dB

3.24 SQAM CD - Track 60 (Schubert Piano extract) 80.1139 dB -02.8861 dB

Table K.1: Replay Gain values for a selection of audio tracks

K.8.1 Discussion

These tracks were processed by ReplayGain on an individual track-by-track basis, giving the

"Radio" level equalisation. The intention is to make all the tracks sound equally loud, and this

is achieved. There are only two problem tracks; the 1812 overture sounds too quiet when

brought into line with the other tracks, and the Bach organ extract sounds ridiculous when this

small organ is raised to the same loudness as the large pipe organ preceding it. However, these
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problems arise because the radio equalisation is operating exactly as intended, rather than be-

cause of any fault in the algorithm itself. If the user wishes to hear the tracks at ideal, rather

than equalised loudness, they should select the Audiophile Replay Gain Adjustment instead.

The hard limiting on the cannon shot (which was the only track on test which required hard

limiting after Replay Gain processing and +6 dB Pre-amp gain) changes the sound signifi-

cantly. Some listeners would dislike this effect, though others may be impressed by it. If the

listener wishes to play tracks with such a large dynamic range without compression, their only

option is to disable the hard limiting and pre-amp, as suggested for audiophile listeners.

Overall, the ReplayGain adjustment has corrected for the large differences in perceived loud-

ness between the original audio tracks. This demonstrates that the algorithm operates correctly.

User feedback from an initial release of this software has indicated that this process is very

useful, and urgently sought by many users who are irritated by the problems described in the

introduction.

K.9 Further work

The major obstacle facing this proposal is the lack of hardware and software support. At the

time of writing, this proposal has been in the public domain for less than three months. How-

ever, even at this early stage, two programs support the Replay Gain standard: The latest re-

lease of the LAME open source mp3 encoder [Taylor, WEB] calculates the Radio and Audio-

phile Replay Gain Adjustments, and stores these values within a custom header added to every

mp3 files it produces. In addition, a command line tool has been written to calculate and apply

the Radio Replay Gain Adjustment directly to an mp3 file. This allows mp3 files to be re-

played at equalised loudness using existing players without Replay Gain support. It is hoped

that player support will follow shortly.

It is sincerely hoped that the acceptance of this proposal within the PC audio world will embar-

rass the audio industry into embracing a similar concept for consumer audio formats. Whilst

the ReplayGain algorithm itself may be updated or superseded, the inclusion of meta data

specifying the Replay Gain is long overdue, and deserves urgent consideration.
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K.10 Conclusion

In this paper, it has been suggested that the ideal replay gain for every audio track should be

stored as meta data within the track itself. The SMPTE RP 200 standard is suggested as the

calibration reference. Two Replay Gain Adjustments have been defined relative to this refer-

ence; “Radio”, which causes all tracks to be reproduced at the same loudness, and “Audio-

phile” which causes all tracks to the reproduced at an ideal loudness. An algorithm has been

proposed for calculating the perceived loudness of an audio track, and hence the Radio Replay

Gain Adjustment for that track. New header components have been suggested for two file for-

mats in order to store the Replay Gain Adjustment values along side the audio data. The re-

quired behaviour of players wishing to implement the Replay Gain standard has been defined.

Finally, the ReplayGain algorithm has been demonstrated to work as designed, successfully

correcting unwanted loudness changes between discs.
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