Determining local transientness of audio signals
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Abstract— We describe a new method for estimating the degree
of “transientness” and “tonality” of a class of compound signals
involving simultaneously transient and harmonic features. The
key assumption is that these two layers admit sparse expansions
in wavelet and local cosine bases. The estimation is performed
using particular form of entropy (or theoretical dimension)
functions. We provide theoretical estimates on the behavior of
the proposed indices, as well as numerical simulations. Audio
signals provide a natural field of application.

Index Terms—audiophonic signal, transient, tonal, wavelet
basis, local Fourier basis, sparsity.
EDICS: 1.TFSR, 2.AUEA

I. INTRODUCTION

Many generic signal classes feature significantly different
“components”, such as transients, (locally) sinusoidal or har-
monic “partials”, or stochastic-like components in sounds, or
edges, textures,... in images. Detecting the presence of such
components is one of the classical signal processing problems.
Another interesting problem is to estimate whether a given
portion of signal is for example more transient than harmonic
or periodic, or in other words to estimate “transientness” or
“tonality” indices. This finds immediate applications in several
contexts, including the hybrid signal coders [4], [8], [15] which
use different methods for encoding transient or tonal regions
(and were the main motivation of this work), more general
purpose hybrid models [1], or similar recent ideas in image
coding [10], [13]. We propose here simple criteria, based on
transform coding ideas, for estimating such indices. The main
idea is to use orthonormal bases in signal spaces which are
significantly different from each other in the following sense:
a given component has a sparse expansion in a given basis,
while the others have dense expansions. Information theoretic
criteria (we elaborate on the case of a variant of Shannon’s
entropy) therefore yield estimates for the indices.

We focus here on the case of transient and locally sinusoidal
(or harmonic) layers in audio signals, using wavelet and local
cosine bases. However, the approach we develop may be
adapted to different signal layers (chirps for example), or in
higher dimensions. We provide theoretical estimates for the
behavior of transientness and tonality indices, and illustrate
our results by numerical simulations and tests on real sounds.

Il. A MODEL FOR SPARSE AUDIO SIGNALS

We focus on the particular application to audio signals, and
limit ourselves to transient and tonal features. Our starting
point is the assumption that transient signals have a sparse
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expansion in a wavelet basis (provided the wavelets have small
enough support), and that tonals have sparse expansion in
local cosine basis (with smooth enough window function). We
are naturally led to consider a generic redundant “dictionary”
made out of two such orthonormal bases, denoted by ), and
wg respectively (we refer to [2], [9], [16] for detailed tutorials),
and signal expansions of the form
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where A and A are (small, and this will be the main sparsity
assumption) subsets of the index sets, termed significance
maps. The nonzero coefficients o are independent A/(0, o)
random variables, and the nonzero coefficients 35 are indepen-
dent A (0, G5) random variables: r is a residual signal, which
is not sparse with respect to the two considered bases (we shall
talk of spread residual), and is to be neglected or described
differently.

Given a signal assumed for simplicity to be of the form (1),
with unknown values of |A| and |A|, we are interested in find-
ing estimates for the latter, or at least for the “transientness”
and “tonality” indices
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We propose a procedure close to the notions of theoretical di-
mension or «-entropies, advocated by M.V. Wickerhauser [17]
and coworkers, which may in some situations be shown to be
closely connected to the notion of Shannon entropy [14].

For the sake of simplicity, we shall work in this section in
a finite dimensional context.

Definition 1: Given an orthonormal basis B = {e,,n €
S} of a given N-dimensional signal space &, define the
logarithmic dimension of x € £ in the basis B by

Di(a) = = 3 log (I, en)|? ) ©

It follows from a simplengéglculation that in the framework
of the signal models under consideration,

Lemma 1: Given an orthonormal basis B = {e,,n € S},
assuming that the coefficients (z,e,) are A (0,c,) random
variables, one has

E{Ds(@)} = C + 1 3 loga(03) @
nes
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where ¢ = 1 + ~/In(2) is a universal constant (y =
5772156649 being Euler’s constant.)

Returning to the model (1), and assuming that the coeffi-
cients ay, A € A and 35,8 € A are respectively N (0,0, ) and
N(0,65) independent random variables, the coefficients

ax = <CE,1/},\> 5

bs = <wi5> )



are centered normal random variables, whose variance depends
on whether A € A (or 6 € A) or not. For example,
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we obtain, for the ¥ = {4} basis
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and a similar expression for the logarithmic dimension Dy ()
with respect to the W = {ws} basis.

In the simpler case where o) = o, VA € A and 65 = &,
Vo € A, we introduce the Parseval weights

pA(A) = 3 Jws, w)?, Bs(8) =Y [ws, va)2, (D)
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which satisfy the following property, which is an immediate

consequence of Parseval’s formula: for all £, >, [(f, ¥x)|? =

1£112.

Lemma 2: With the above notations, the Parseval weights
satisfy
0<pr(A) <1, 0<ps(A)<1,
Introducing the relative redundancies of the bases ¥ and W
with respect to the significance maps

e(A) =suppr(A), €(A) =supps(A), (8)
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one then obtains simple estimates for the logarithmic dimen-
sion

Theorem 1: With the above notations, assuming that the
significant coefficients {ax, A € A} and {35, € A} are
independent identically distributed A/(0, o) and A(0,5) nor-
mal variables respectively, and assuming r = 0, the following
bounds hold

E(Dy(2)} > O+ ' logy (%)
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with C = 1 + «/1n(2). Exchanging the roles of A and A,
a similar bound holds for the other logarithmic dimension
Ihv(x)

Proof: the proposition follows directly from the fact that in
such a situation, equation (6) reduces to

E{Dy(z)} = C+log, < I+ 62p,\(A))1/N
AEA
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from Lemma 2 and the definition of e(A). [ )

This result is quite appealing in several respects

The bounds in Equations (9) and (10) differ by
|A|logy (1 + €(A)5?%/0?)/N. Let us assume for a while
that this term may be neglected (more on that below).
Then the behavior of E {Dy (x)} is essentially controlled

by
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The behavior of this term is not easy to understand, but
a first idea may be obtained by replacing p,/ (A) by its
“ensemble average”
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which yields the approximate expression:

E{Dy(z)} = C+ % log2(02)
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Therefore, if the “W-component” of the signal is sparse
enough, i.e. if |[A|/N is sufficiently small (compared
with 1), E{Dy(z)} may be expected to behave as

log, (&2%‘), which suggests to use

(12)
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as an estimate (up to a multiplicative constant) for the
“size” of the W component of the signal. Similarly, it is
tempting to use
\J Dw (z) C 2|A|
Ny (z) =27" ) ~ 2 ot (14)
as an estimate (up to a multiplicative constant) for the
“size” of the ¥ component of the signal.

. As mentioned above, the difference between the lower

and upper bounds depends on two parameters: the spar-
sity |A|/N of the ¥-component, and the relative redun-
dancy parameters ¢(A). The latter actually describe the
intrinsic differences between the two considered bases.
When the bases are significantly different, the relative
redundancy may be expected to be small (notice that in
any case, it is smaller than 1).

The relative redundancy parameters ¢ and é which pop
up in our model differs from the one which is generally
considered in the literature, namely the coherence of the
dictionary W U W (see e.g. [5], [6], [7])

MWu¥]= sup [(bb).

b, eWUW
b£b!
The latter is intrinsic to the dictionary, while the Parseval
weights and corresponding e and & provide a finer infor-
mation, as they also account for the signal models, via
their dependence in the significance maps A and A.



iv. Precise estimates for the behavior of the ¢ and ¢ parame-
ters are fairly difficult to obtain. What would be needed is
a model for the significance maps A and A, in the spirit
of the structured models described in the two previous
sections. Returning to the wavelet and MDCT case, it
is quite natural to expect that models implementing time
persistence in A and scale persistence in A (as in [12],
where more numerical simulations are given) would yield
smaller values for the relative redundancies than models
featuring uniformly distributed significance maps.

Another interesting point is the sensitivity of such tools with
respect to departures to the model, or noise. We show that
results similar to the above ones still hold true in the presence
of white noise, i.e. assuming that the residual » in (1) is a
centered Gaussian white noise. In such a situation, denoting
by s? the variance of the noise r, equation (6) becomes
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and a similar expression for the logarithmic dimension Dy (z)
with respect to the W = {ws} basis. Hence, the approximate
expression (12) becomes

A
E{Du(@)) ~ O + S logy (0 + 57)

(16)
(2)m (o).

and the discussion above still holds (after suitable adaptation)
as long as the signal’s energy 52| A| exceeds the noise’s energy
s2N.

I11. NUMERICAL RESULTS

These estimates are confirmed by numerical simulations,
run on the sparse hybrid models given in (1). We generated
several realizations of the signal model (with » = 0 first), with
fixed number M of MDCT atoms, and variable numbers L of
wavelet atoms, and computed the estimated rates

Ny+Nw ' " Ng+ Ny’

to be compared with the ground truth (2), i.e. I;on, = M /(M +
Lyand I, = L/(M+ L) =1— ILiop.

As may be seen from the numerical simulations presented in
Figure 1 (which corresponds to averages over 10 realizations
of the model), the estimated curves reproduce quite well the
theoretical ones. Some discrepancies may be observed at the
right hand side of the curves, where the sparsity assumptions
are not valid any more, and the correction terms in (12) comes
into play. Observe that the curves cross precisely at the correct
location M = L.

The influence of the noise may be seen on Figure 2: a white
noise, whose energy equals 30% of the signal’s energy, has
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Fig. 1. Transientness and tonality estimates for the model (averaged over

10 realizations). Top: L = 25, and M € {1,...150}; increasing curves:
Iton and Iton; decreasing curves: I+ and I¢-. Bottom: M = 25, and L €
{1,...150}; increasing curves: I+, and I:-; decreasing curves: Iton and
Iton-
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Fig. 2. Influence of white noise: Transientness and tonality estimates for
the model (averaged over 10 realizations) with additional white noise. Same
legends as before.

been added. The effect is what can be anticipated from (16),
namely the presence of an additional noise term moves the
experimental curves away from the theoretical ones.

Besides the numerical simulations above, the transientness
and tonality indices have been tested on real audio signals,
yielding very sensible results.® A first example, based upon a
simple castagnette signal (6 sec long, sampled at 44,100 kHz)
is shown in Figure 3. A value for the transientness index and
the tonality index was computed for all time frames (23msec.
long). Since Ii,, = 1 — I, only the transientness index is
displayed for the sake of clarity. This signal is quite simple,
as it essentially exhibits attacks followed by harmonic tones,
and is thus a “perfect” test for the proposed approach. As
may be seen from the bottom plot of Figure 3, all attacks are
correctly captured, and the corresponding index is quite high.

LAdditional material, including sound files, may be found at the web site
http://www.cmi .univ-mrs.fr/ torresan/papers/balance.
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Fig. 3. Transientness index for the test “castagnette” signal. Signal (top) and
transientness index (bottom).
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Fig. 4.  Transientness index for the test “jazz” signal. Signal (top) and
transientness index (bottom).

In between attacks, the transientness index is very low, which
is also natural since the signal is essentially harmonic, thus
sparsely represented by local cosine basis.

The second sound example displayed here is a more com-
plex audio signal, extracted from a jazz recording (about 6
sec. long, sampled at 44,100 kHz) which features “mixed”
tonals and transients. The numerical results are displayed in
Figure 4. Notice again that the “obvious” attacks of the signal
have been captured by the method. A closer examination of
the signal (using a “spectrogram type” representation, not
shown here) shows that in the middle part of the signal (more
precisely, between seconds 3 and 5), the harmonic content is
stronger, which explains the lower average value of Iy, there.
This illustrates the fact that I, really provides an estimate
of the proportion of transients relative to tonals, rather than
an absolute indicator of the presence of transient, such as the
ones used in transient detection [8] for example.?

More numerical results, in the framework of the hybrid
audio coding scheme developed in [4], will be given in a

2Let us again refer to the web site http://www.cmi.univ-
mrs.fr/ torresan/papers/balance for supplementary details.

forthcoming publication [12].

1V. CONCLUSIONS

We have shown that sparsity of wavelet and MDCT signal
representations may be exploited in order to balance the
amount of tonal and transient components present in the signal.
This approach proves to be extremely effective in the context
of hybrid audio signal coding [4], [12], and possesses a wider
range of applications, including image coding [10].

The theoretical analysis we have outlined here is based on
strong a priori assumptions on the signal (essentially, a hybrid
model such as (1), with sparse significance maps A and A, and
equal (or comparable) energies for the two layers. When this
is not the case, the approach may easily be refined to account
for departures from such a situation.

Finally, let us simply mention that the approach may be
extended to more than two layers, provided that the considered
orthonormal bases are sufficiently different (in terms of their
“Parseval weights”, see above) to allow the separation. Again,
this may prove useful in the context of image coding, where
new types of waveforms (e.g. curvelets) may be introduced.
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