IMPROVED LOW BIT-RATE AUDIO COMPRESSION USING REDUCED RANK ICA
INSTEAD OF PSYCHOACOUSTIC MODELING

Adidl Ben-Shalom, Michael Werman

School of Computer Science
Hebrew University
Jerusalem, Isradl.

{ chopin,werman} @cs.huji.ac.il

ABSTRACT

Traditional audio coding is based on a perceptual compres-
sion paradigm that exploits psychoacoustic information to
efficiently encode audio signals. Recently, extensive re-
search has been conducted in order to understand how the
brain encodes natural signals. These results suggest that the
encoding process is very efficient in terms of redundancy
reduction of the signal information. It could be that the psy-
choacoustic effects (such as the masking effect) are only a
special case of a more general redundancy reduction mech-
anism that exists in the auditory pathway. Motivated by
this work we propose a new audio coding scheme that is
based on improved sound representation found by Indepen-
dent Component Analysis. Using a local linear, low rank,
non-orthogonal transform, we remove additional redundan-
cies in the signal. At low bitrates this coding scheme gives
results superior to a legacy perceptual encoding scheme for
different kinds of audio signals.

1. INTRODUCTION

Perceptual audio coders exploit psychoacoustical knowledge
about the human auditory system to efficiently encode audio
signals. These coders exploit a phenomenon known as the
’masking effect’, which was discovered in psychoacoustics
experiments. Extensive research has been conducted over
the last years which aims to understand how the auditory
sensors encode the information in our brain. Recent results
show that the signals are efficiently encoded by the auditory
sensors in terms of redundancy reduction along the auditory
pathway. Several models have been proposed to describe
the behavior of this efficient coding process [1, 2].

In this work we use the redundancy reduction idea in
order to design a new architecture for a low bit-rate audio
coder. We simulate the audio encoding process in a man-
ner which we assume is done along the auditory pathway.
Redundancy reduction is done using ICA, which is a re-
cently developed statistical tool for data analysis. We opti-
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mally decompose the signal into a reduced rank representa-
tion whose basis vectors are "as independent as possible”.
This achieves several advantages for the compression task:
1). The reduced rank representation is very sparse and al-
lows an adaptive transmission of the transform coefficients
without increasing the overall bitrate. 2). The bit allocation
is performed on approximately independent channels, a sit-
uation which is required by rate-distortion theory 3). No
psychoacoustic model is employed since the ICA vectors
do not correspond to the masking properties of the human
ear. Nevertheless, the superior performance of our method
suggests an interesting idea that the the classical psychoa-
coustical masking of pure tones could be a special case of a
more general redundancy reduction mechanism of the audi-
tory pathway [3].

The other components of our encoder are a standard fil-
ter bank used for time to frequency mapping, bit allocation
and a uniform quantizer. We compared our encoder to a ba-
sic perceptual encoder and it shows superior results in ob-
jective listening tests.

2. PRELIMINARIES

2.1. Perceptual Coding

Perceptual coding algorithms belong to the class of lossy
compression algorithms. The performance of a lossy al-
gorithm is often measured by the reconstruction error. We
would like the reconstruction error to be minimal so that
the reconstructed data is as similar to the source as possi-
ble. This situation is not true for perceptual coders. As in
other lossy coders, the goal of perceptual coders is that the
reconstructed data will be similar to the source. However,
the similarity measure is defined by the human ear, thus, the
coder must exploit psychoacoustic knowledge about human
hearing to make the reconstruction error inaudible.

An important aspect of the human hearing is the mask-
ing effect. The masking effect [4] states that the threshold of
hearing of the different frequencies arises in the presence of



a masking tone or noise. Masking curves depicts the thresh-
old of hearing neighboring frequencies in the presence of
the tone or noise masker. The masking effect is used by
perceptual audio coders to make the reconstruction error in-
audible.

Figure 1 depicts the structure of a basic perceptual coder.
The signal samples are first processed using a time to fre-
quency mapping. The output of the filters are called sub-
band samples or subband coefficients. The subband coeffi-
cients are then used to calculate the masking thresholds for
each band. The bit allocation algorithm assign bits to the
different bands so that the noise, which is introduced by the
quantization process will be below the masking threshold,
thus inaudible by the listener.
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Fig. 1. Basic perceptual audio coder architecture.

2.2. Independent Component Analysis

Independent Component Analysis (ICA) is a recently devel-
oped statistical tool for extracting statistically independent
components from a random vector [5]. ICA can be used to
solve the classical *cocktail party’ problem in which n sen-
sors record a mixture of n people speaking simultaneously.
ICA is used to recover the original speaker signals from n
mixtures. Other applications of ICA are audio analysis, nat-
ural images analysis, financial data, medical data and other
inverse mixing problems [6].

In addition to unmixing problems ICA has been shown
to be a useful tool for feature extraction and data representa-
tion. Formally, let x = (x1, 2> . .. z,) be the observed data
vector. ICA’s goal is to find the matrix A such that:

x = As (1)

wheres = (s1, 52 .. .s,) are statistically independent com-
ponents. The columns of the matrix A can be thought of as
basis vectors and the vector s is the representation of x in
this basis. ICA analysis for feature extraction and data rep-
resentation was studied in [2, 1]. For natural audio signals
it was shown that ICA analysis results in a local vector basis
which resembles short waveforms in the original signal [2].

The ICA problem can be formalized as maximum like-
lihood estimation problem. We wish to find a matrix A and
set of sources s which best explains the empirical variables

2. From Information theory we know that
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where ¢ is the empirical distribution of the sources, p is the
hypothesized distribution of the sources and KL stands for
the Kullback-Leibler divergence. One can show that

KL(qllp) =KL || [[e) + KL(JJ @ Ip) @

1 g: are the marginal product of the empirical distribution.
The second term is minimized when we choose p = [] ¢:.
This reduces the problem to minimize K'L(q || [] ;). The
KL distance between a distribution vector and its marginal
probabilities is called the Mutual Information. Eventually,
we wish to find a matrix which will make the empirical
sources as independent as possible.

Several algorithms have been proposed to solve the ICA
problem. A comprehensive overview of the algorithms can
be found in [6]. In our experiments we used the Jade [7]
algorithm.

3. ENCODING ALGORITHM

Our audio compression algorithm is comprised of several
building blocks (Figure 2). We use subband decomposi-
tion to perform an initial time to frequency mapping. The
subband coefficients are then grouped to blocks and ICA
analysis is computed on each block. The output of the ICA
analysis is both reduced rank ICA coefficients and ICA mix-
ing/demixing matrix. The ICA coefficients are then quan-
tized and packed in frames. The ICA transform matrix is
quantized and sent as side-information for each block.

3.1. Subband Decomposition

For subband decomposition we adopt the polyphase filter
bank used in the MPEG coding standard [8, 9]. This filter
bank is a pseudo-QMF, cosine modulated filter bank which
splits the PCM input audio samples into 32 equally spaced
bands. The filter bank gives good time resolution and rea-
sonable frequency resolution [9].

We denote by z[n] the input sample at time n and by
s;[t] the output of the i’th filter bank band at time ¢. The
filter bank is critically sampled, which means that for every
32 input samples the filter bank outputs 32 samples. Since
the output of each band is sub-sampled by a factor of 32
then ¢ is a multiple of 32 audio samples. The output of each
filter can be written [10]:
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and h[n] corresponds to analysis window coefficients.

3.2. Reduced Rank ICA Coding

The filter bank output coefficients are grouped into blocks
for ICA processing. When choosing the block length we
have to consider two factors. On one hand, we want a true
realization of the redundancy reduction process in the audi-
tory pathway, which constrains us to short blocks. On the
other hand, the ICA matrix must be sent along with each
block of data as side information so using short blocks gives
us more overhead. We found that using blocks of approxi-
mately 1 second is a sufficient trade-off.

ICA analysis is comprised of two steps. The first step
includes dimension reduction of the data, and the second
step consists of ICA analysis on the reduced rank coeffi-
cients. We denote the filter bank coefficients block by X.
X is a 32 x L matrix where 32XL = 1 second. If we
consider XT we can view the columns as variables and the
rows as time instants of these variables. Each row is a vector
of dimension 32 which is a time instance of the filter bank
output. These variables are highly correlated and we would
like to represent them in a basis on which there will be no
correlation between the variables.

The first step is to reduce the dimension of the data. We
do it by reducing the dimension of the row space of XT by
using the singular value decomposition (SVD) method. XT
can be decomposed to :

XT =yusv?T (6)

where U is an m x m matrix and V is an n x n matrix and
S is a diagonal matrix which contains the singular values of
XT. In our scheme, m = L and n = 32. To reduce the
dimension of the row space of X T to a lower dimension r,
we project XT on the first » column vectors of V

YT =XTv, (7

where V. is a matrix which contains the first » column vec-
tors from V. Y now is an r * m matrix in which the rows
contain the representation of the filter bank coefficients in
the reduced rank basis. The rows of Y are not statistically
independent. To achieve independence we apply ICA anal-
ysis on the rows of Y:

Y =wvIx (8)

W is the unmixing matrix obtained by ICA. Y is the re-
duced rank independent component representation of the
subband coefficients. The matrix B = (VI W)* is encoded

as side information for each block and used by the decoder
to decode the samples by
XT

rec

_vT _ T T
=YIB=YI(VIW) ©)

The sign § stands for the pseudo-inverse matrix.

3.3. Bit Allocation and Quantization

Rate distortion theory shows that a signal can be compressed,
for a given distortion D, in a rate that is lower-bounded by
the minimal mutual information between the original sig-
nal and the quantized signal. In order to obtain an optimal
quantizer ), knowledge of the complete multi-variate prob-
ability distribution of the source vector is necessary. This re-
quires exponentially large codebooks. Due to practical con-
siderations, the quantization is performed componentwise,
a situation which is optimal only if the variables are mutu-
ally independent. In case of Gaussian variables, statistical
independence is achieved by PCA. In case of non-Gaussian
signal statistics, this is approximately achieved using ICA.

The output of the ICA analysis step is a set of r statisti-
cally independent bands. Our hypothesis is that in our rep-
resentation the different bands closely resemble the coding
information sent by the auditory sensors to code audio sig-
nals. Thus, we do not introduce any other perceptual mea-
sure in the bit allocation process as was done in the legacy
audio coder. The quantization of the different bands here
should be optimal in term of minimum reconstruction error
of the coefficients.

If we denote by R,,, the average number of bits used
to encode samples in the block, Ry, the average bit rate used
to encode samples in the k’th band and by o}, the variance
of the coefficients on the k’th band. Then the optimal bit
allocation for the different bands is given by [11]:

2
T

H£=1 (Ul2c)

The bit allocation according to equation 10 is optimal in
terms of the reconstruction error. The problem is that Ry,
might be negative or not an integer number. To solve this
problem we use an iterative algorithm for bit allocation with
positive integer constraint similar to the one described in
[11].

Using the bit allocation information we quantize the ICA
coefficients with a uniform quantizer. We assign 8 bits to
quantize the ICA mixing matrix samples. In our experi-
ments the dimension r was chosen to 5. Thus, the ICA ma-
trix size is 32 x 5 which results in overhead of 160 bits
assigned for each block of data. We compensate this over-
head with the dimension reduction of the filter bank coeffi-
cients. The scalefactors which are used by the decoder for
re-quantization are quantized with 6 bits.

1
Ry = Ravg + §l092 (10)
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Fig. 2. Architecture of the proposed encoder.
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Fig. 3. Encoders mean ranking value with 95% confidence
interval. The left figure corresponds to encoding in 32kbps
and 44.1khz sampling rate. The right figure corresponds to
encoding in 32kbps and 32khz sampling rate.

4. EXPERIMENTS RESULTS

We compared our algorithm with two perceptual audio coders.

MPEG-1 layer 1 and MPEG-1 layer 3 (MP3) [8]. Layer 1
algorithm is simple yet uses perceptual measures such as the
masking effect to encode audio signals efficiently. Layer
3 contains several enhancements such as improved hybrid
filter bank, noise shaping procedure, and huffman coding.
Since we compared our encoding algorithm to perceptual
coding algorithms, the test was carried out using a psycho-
physical experiment.We performed two sets of tests. In both
tests the encoder bit-rate was 32kbps. In the first test the
sampling rate was 44.1Khz which results in 0.7256 bits per
sample, and in the second test we used sampling rate of
32Khz which results in 1 bit per sample. The participants
were asked to rate the encoder given a reference source with
a 1 to 5 scale where 5 stands for imperceptible encoding
and 1 stands for a very annoying encoding. We carefully
selected the music test files to cover wide range of audio
data. Figure 3 depicts the mean rating value for each of
the encoders. Table 1 shows pairwise comparisons between

32kbps, 44.1khz SR || 32kbps, 32khz SR
mp3 | mpl | ica mp3 | mpl | ica
mp3 0 47 43 0 50 | 48
mpl 1 0 9 0 0 11
ica 5 35 0 2 37 0

Table 1. Pairwise comparison between encoders ratings.
Entry (i, ) in the table correspond to the number of times
that encoder 4 got better ranking than encoder j.

the encoder ranking results. It can be seen that for both
sampling rates the ICA coder was rated higher than Layer-1
and less than Layer-3. Moreover, as we go up with sam-
pling ratio ICA encoder is significantly better than Layer-
1. The test files, which were used in the experiment can
be downloaded from http://www.cs.huji.ac.il/~chopin/ica-
encoder/index.html

5. CONCLUSION

In this paper we have shown new architecture for a low
bit-rate audio coder motivated by new results from audi-
tory research. Our results show that representing audio data
as independent components can reduce the audible noise
in audio compression. The superior results of MP3 over
our algorithm can be argued to be because of the advanced
coding algorithms used in MP3. MP3 adds very efficient
noise shaping algorithm, which together with huffman cod-
ing gives superior results. We have implemented the same
coding blocks as in Layer-1. Thus, comparison with Layer
1 is more appropriate. The ICA encoder had superior re-
sults than Layer-1 for different music files. This leads us to
the conclusion that using ICA might be equivalent or better
than psychoacoustic modeling.
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