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Abstract
Broadband communication networks and multimedia data available in a digital format opened many
challenges and opportunities for innovation. Versatile and simple-to-use software and decreasing
prices of digital devices have made it possible for consumers from all around the world to create and
exchange multimedia data. Broadband Internet connections and near error-free transmission of data
facilitate people to distribute large multimedia files and make identical digital copies of them. A
perfect reproduction in digital domain have promoted the protection of intellectual ownership and the
prevention of unauthorized tampering of multimedia data to become an important technological and
research issue.

Digital watermarking has been proposed as a new, alternative method to enforce intellectual
property rights and protect digital media from tampering. Digital watermarking is defined as
imperceptible, robust and secure communication of data related to the host signal, which includes
embedding into and extraction from the host signal. The main challenge in digital audio watermarking
and steganography is that if the perceptual transparency parameter is fixed, the design of a watermark
system cannot obtain high robustness  and a high watermark data rate at the same time. In this thesis,
we address three research problems on audio watermarking: First, what is the highest watermark bit
rate obtainable, under the perceptual transparency constraint, and how to approach the limit? Second,
how can the detection performance of a watermarking system be improved using algorithms based on
communications models for that system? Third, how can overall robustness to attacks to a watermark
system be increased using attack characterization at the embedding side? An approach that combined
theoretical consideration and experimental validation, including digital signal processing,
psychoacoustic modeling and communications theory, is used in developing algorithms for audio
watermarking and steganography.

The main results of this study are the development of novel audio watermarking algorithms, with
the state-of-the-art performance and an acceptable increase in  computational complexity. The
algorithms' performance is validated in the presence of the standard watermarking attacks. The main
technical solutions include algorithms for embedding high data rate watermarks into the host audio
signal, using channel models derived from communications theory for watermark transmission and
the detection and modeling of attacks using attack characterization procedure. The thesis also
includes a thorough review of the state-of-the-art literature in the digital audio watermarking.

Keywords: audio watermarking, digital rights management, information hiding, 
steganography





To my family





Preface

The research related to this thesis has been carried out at the MediaTeam Oulu Group
(MT) and the Information Processing Laboratory (IPL), University of Oulu, Finland. I
joined the MediaTeam in December 2000 and started my postgraduate studies, leading
to the thesis, at the Department of Electrical and Information Engineering in April 2001.
Professor Jaakko Sauvola, the director of the MT, docent Timo Ojala, the associate direc-
tor of the MT, and professor Tapio Seppänen, the MT’s scientific director are acknowl-
edged for creating an inspiring research environment of the MT.

I was fortunate to have professor Tapio Seppänen, who was at the time the head of the
IPL, as my thesis supervisor. His pursuit for the uppermost standards in research was the
great source of my motivation. I wish to thank him for his guidance and encouragement,
especially during the starting period of my postgraduate study.

I am grateful to the reviewers of the thesis, professor Min Wu from the University of
Maryland, College Park, USA, and professor Aarne Mämmelä from the Technical Re-
search Centre of Finland (VTT), Oulu, Finland. Their feedback improved the quality of
the thesis significantly. I am also thankful to Lic. Phil. Pertti Väyrynen for proofreading
the manuscript.

I am thankful to my project managers and team leaders Jani Korhonen, Anja Keski-
narkaus and Mikko Löytynoja for knowing how to distribute my workload related to the
projects and let me carry out research and study that was not always in the narrow scope
of the project. I would like to especially thank to Timo Ojala for his credence and support
throughout these years. He invested a lot of time and patience in solving numerous practi-
cal problems and in making my life in Oulu more pleasant. He would always find time for
my dilemmas and our discussions that ranged from research issues to latest happenings in
the Premier League.

My special thanks are due to my friends with whom I spent my spare time in Oulu. My
first neighbors Ilijana and Djordje Tujkovic were a great source of support and happiness
for me. Ilijana was my closest friend that had enough patience to help with all the issues
emerging from my immature personality. Djordje, being himself a researcher, was not
only a friend to me; he also gave me many advices that had a positive impact to the
length of my PhD studies. Anita and Dejan Danilovic, although working hard 12 hours
a day, would always find some extra time to hang out with me. I thank them for all the
great late night hours we spend together, their sincere friendship and enormous moral



support throughout my studies. The largest part of this thesis was made using the PC that
I borrowed from them. Dejan Drajic and Zoran Vukcevic, besides being my friends, had
a specific role of familiarizing Finland to me and giving me advices that helped me a lot
in the everyday life. Dejan Drajic and Jonne Miettunen were my favorite pub mates and
"football experts" that I liked to argue with. I thank Sharat Khungar for all the late lunches
we had together in Aularavintola and all the new things I learned about the culture of the
Indian subcontinent.

I wish also to thank to Protic family, my first cousins Nemanja and Aleksandar and my
aunt Jelena and uncle Zivadin. Thank you for your love and support, not only during my
PhD studies, but also throughout the hard times my family went trough.

The financial support provided by Infotech Oulu Graduate School, Nokia, Sonera,
Yomi, the National Technology Agency of Finland (TEKES), the Nokia Foundation, and
the Tauno Tönning Foundation is gratefully acknowledged.

It is hard find words to express my gratitude to my loving parents, Bogdanka and
Slavko for everything they have done for me. Thank you for your love, guidance, as well
as encouragement that you have unquestioningly given to me. I thank sincerely to my
brother Dejan for standing by my side during all ups and downs in my life, for his im-
mense support, love and credence. My dedication to hard work and vigor to face all the
good and less pleasant things that life brings, I grasp from your love and support you have
given to me.

Oulu, May 2004 Nedeljko Cvejic



List of Contributions

This thesis is based on the ten original papers (Appendices I–X) which are referred in the
text by Roman numerals. All analysis and simulation results presented in publications
or this thesis have been produced solely by the author. Professor Tapio Seppänen gave
guidance and needed expertise in general signal processing methods. He had an impor-
tant role in the development of the initial ideas and shaping of the final outline of the
publications.

I Cvejic N, Keskinarkaus A& Seppänen T (2001) Audio watermarking using m se-
quences and temporal masking. In Proc. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, New York, NY, October 2001, p. 227–230.

II Cvejic N & Seppänen T (2001) Improving audio watermarking performance with
HAS-based shaping of pseudo-noise. In Proc. IEEE International Symposium on Sig-
nal Processing and Information Technology, Cairo, Egypt, December 2001, p. 163–
168.

III Cvejic N & Seppänen T (2002) Audio prewhitening based on polynomial filtering
for optimal watermark detection. In Proc. European Signal Processing Conference,
Toulouse, France, September 2002, p. 69–72.

IV Cvejic N & Seppänen T (2002) A wavelet domain LSB insertion algorithm for high
capacity audio steganography. In Proc. IEEE Digital Signal Processing Workshop,
Callaway Gardens, GA, October 2002, p. 53–55.

V Cvejic N & Seppänen T (2002) Increasing the capacity of LSB-based audio steganog-
raphy. In Proc. IEEE International Workshop on Multimedia Signal Processing, St.
Thomas, VI, December 2002, p. 336–338.

VI Cvejic N & Seppänen T (2003) Audio watermarking using attack characterization.
Electronics Letters 13(39): p. 1020–1021.

VII Cvejic N, Tujkovic D & Seppänen T (2003) Increasing capacity of an audio watermark
channel using turbo codes. In Proc. IEEE International Conference on Multimedia and
Expo (ICME’03), Baltimore, MD, July 2003, p. 217–220.

VIII Cvejic N & Seppänen T (2003) Rayleigh fading channel model versus AWGN chan-
nel model in audio watermarking. In Proc. Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, November 2003, p. 1913-1916.



IX Cvejic N & Seppänen T (2004) Spread spectrum audio watermarking using frequency
hopping and attack characterization. Signal Processing 84(1): p. 207–213.

X Cvejic N & Seppänen T (2004) Increasing robustness of an improved spread spectrum
audio watermarking method using attack characterization. In Proc. International Work-
shop on Digital Watermarking, Lecture Notes in Computer Science 2939: p. 467–473.

The general spread-spectrum methods used partially in Paper I and for some other pub-
lications (see references) were developed in cooperation with M.Sc. Anja Keskinarkaus.
The contribution of Dr. Djordje Tujkovic in Paper VII was expertise in the area of fad-
ing channels and channel coding. He also provided turbo coding software, crucial for
experimental simulations.



Symbols and Abbreviations

A/D Analog to Digital
AAC Advanced Audio Coding
AWGN Additive White Gaussian Noise
BEP Bit Error Probability
BER Bit Error Rate
bps Bits Per Second
CD Compact Disc
CSI Channel State Information
D/A Digital to Analog
DC Direct Current
DFT Discrete Fourier Transform
DS Direct Sequence
DSP Digital Signal Processing
DVD Digital Versatile Disc
DWT Discrete Wavelet Transform
FFT Fast Fourier Transform
FH Frequency Hopping
FIR Finite Impulse Response
GTC Gain of Transform Coding
HAS Human Auditory System
HVS Human Visual System
ID Identity
IID Independent Identically Distributed
ISS Improved Spread Spectrum
ISO International Organization for Standardization
IWT Integer Wavelet Transform
JND Just Noticeable Distortion
LSB Least Significant Bit
MER Minimum-Error Replacement
MPEG Moving Picture Experts Group
mp3 MPEG 1 Compression, Layer 3
MSE Mean-Squared Error



NMR Noise to Mask Ratio (in decibels)
PDA Personal Digital Assistant
PDF Probability Density Function
PN Pseudo Noise
PRN Pseudo Random Noise
PSC Power-Density Spectrum Condition
QIM Quantization Index Modulation
SDMI Secure Digital Music Initiative
SMR Signal to Mask Ratio (in decibels)
SNR Signal to Noise Ratio (in decibels)
SPL Sound Pressure Level
SS Spread Spectrum
SYNC Synchronization
TCP Transmission Control Protocol
UDP User Datagram Protocol
VHS Video Home System
WMSE Weighted Mean-Squared Error
WEP Word Error Probability
WER Word Error Rate

Aωk Fourier Coefficients of the Watermarked Signal
b Binary Encoded Watermark Message
b̂ Decoded Binary Watermark Message
co Host Signal
cij
t Cost Function

cw Watermarked Signal
cwn Received Signal
C Channel Capacity
Ch Capacity ofL Parallel Channels
Ci Magnitude of an FFT Coefficient
demb Embedding Distortion
datt Attack Distortion
f Verification Binary Vector
G Random Variable That Models the Channel Fading Variation
h Entropy
I(r ;m) Mutual Information Between Transmitted Watermark Message and Received Signalr
k Key Sequence
K Watermark Key
L Number of Parallel Channels in Signal Decomposition
Lb Length of Vectorb
Lx Length of Vectorx
m Watermark Message
m Subband Index
n Random Noise



NRe,Im(ω) Integer Quantized Value
o[f ] Observation Sequence
pfn

False Negative Probability
pfp False Positive Probability
px(x) Lx-dimensional Probability Density Function
Q Normalized Correlation
Q(r ;s) Probability Matrix
r Received Signal
r Sufficient Statistics at Receiver
R+ Set of all Positive Real Numbers
R Redundancy Factor in Spread Spectrum Communications
R Coding Gain
s Watermarked Signal
S Pooled Sample Standard Error
Si Quantization Step Size
T 2

0 , T 2
1 Test Statistics

Ti Audibility Threshold
v(t) Fading Parameter
w Watermark Sequence
wa Added Pattern
wn Noisy Added Pattern
wri Reference Pattern
WL

x (K) Codebook Encrypted in the Watermark Key K
x Host Signal
Zg Gaussian Distributed Variable

α Parameter in the Improved Spread Spectrum Scheme
λ Parameter in the Improved Spread Spectrum Scheme
λopt Optimal Parameterλ for the Improved Spread Spectrum Scheme
µ(x, b) Improved Spread Spectrum Function
θn Weight for the Expected Squared Error Introduced by thenth Data Element
σ2 Variance of the Quantization Noise
φ(z) Phase of Audio Signal
Φk(z) Total Phase Modulation
ψ(t) Haar Wavelet





Contents

Abstract
Preface
List of Contributions
Symbols and Abbreviations
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Scope of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.1 Application areas . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.2 Research areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 Research problem . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.2 Research hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.3 Research assumptions . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.4 Research methods . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Overview of the properties of the HAS . . . . . . . . . . . . . . . . . . . 28
2.1.1 Frequency masking . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Temporal masking . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 General concept of watermarking . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 A general model of digital watermarking . . . . . . . . . . . . . 31
2.2.2 Statistical modeling of digital watermarking . . . . . . . . . . . . 33
2.2.3 Decoding and detection performance evaluation . . . . . . . . . . 34

2.2.3.1 Watermark decoding . . . . . . . . . . . . . . . . . . . 35
2.2.3.2 Watermark detection . . . . . . . . . . . . . . . . . . . 36

2.2.4 Exploiting side information during watermark embedding . . . . 37
2.2.5 The information theoretical approach to digital watermarking . . 39

2.3 Selected audio watermarking algorithms . . . . . . . . . . . . . . . . . . 40
2.3.1 LSB coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Watermarking the phase of the host signal . . . . . . . . . . . . . 41
2.3.3 Echo hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.4 Spread spectrum watermarking . . . . . . . . . . . . . . . . . . . 43



2.3.5 Improved spread spectrum algorithm . . . . . . . . . . . . . . . 45
2.3.6 Methods using patchwork algorithm . . . . . . . . . . . . . . . . 48
2.3.7 Methods using various characteristics of the host audio . . . . . . 49

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3 High capacity covert communications . . . . . . . . . . . . . . . . . . . . . . 51

3.1 High data rate information hiding using LSB coding . . . . . . . . . . . . 52
3.1.1 Proposed high data rate LSB algorithm . . . . . . . . . . . . . . 53

3.2 Perceptual entropy of audio . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1 Calculation of the perceptual entropy . . . . . . . . . . . . . . . 57

3.3 Capacity of the data-hiding channel . . . . . . . . . . . . . . . . . . . . 58
3.4 Proposed high data rate algorithm in wavelet domain . . . . . . . . . . . 60
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Spread spectrum audio watermarking in time domain . . . . . . . . . . . . . . 65
4.1 Communications model of the watermarking systems . . . . . . . . . . . 65

4.1.1 Components of the communications model . . . . . . . . . . . . 66
4.1.2 Models of communications channels . . . . . . . . . . . . . . . . 67
4.1.3 Secure data communications . . . . . . . . . . . . . . . . . . . . 67
4.1.4 Communication-based models of watermarking . . . . . . . . . . 69

4.2 Communications model of spread spectrum watermarking . . . . . . . . 71
4.3 Spread spectrum watermarking algorithm in time domain . . . . . . . . . 73
4.4 Increasing detection robustness with perceptual weighting and redundant

embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Improved watermark detection using decorrelation of the watermarked audio 78

4.5.1 Optimal watermark detection . . . . . . . . . . . . . . . . . . . . 79
4.6 Increased detection robustness using channel coding . . . . . . . . . . . . 81

4.6.1 Channel coding with turbo codes . . . . . . . . . . . . . . . . . . 82
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Increasing robustness of embedded watermarks using attack characterization . . 85
5.1 Embedding in coefficients of known robustness - attack characterization . 86
5.2 Attack characterization for spread spectrum watermarking . . . . . . . . 87

5.2.1 Novel principles important for attack characterization implemen-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Watermark channel modeling using Rayleigh fading channel model . . . 89
5.4 Audio watermarking algorithm with attack characterization . . . . . . . . 91
5.5 Improved attack characterization procedure . . . . . . . . . . . . . . . . 93
5.6 Attack characterization section in an improved spread spectrum scheme . 94
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References



1 Introduction

The rapid development of the Internet and the digital information revolution caused sig-
nificant changes in the global society, ranging from the influence on the world economy to
the way people nowadays communicate. Broadband communication networks and mul-
timedia data available in a digital format (images, audio, video) opened many challenges
and opportunities for innovation. Versatile and simple-to-use software and decreasing
prices of digital devices (e.g. digital photo cameras, camcorders, portable CD and mp3
players, DVD players, CD and DVD recorders, laptops, PDAs) have made it possible for
consumers from all over the world to create, edit and exchange multimedia data. Broad-
band Internet connections and almost an errorless transmission of data facilitate people to
distribute large multimedia files and make identical digital copies of them.

Digital media files do not suffer from any quality loss due to multiple copying pro-
cesses, such as analogue audio and VHS tapes. Furthermore, recording medium and
distribution networks for analogue multimedia are more expensive. These first-view ad-
vantages of digital media over the analogue ones transform to disadvantages with respect
to the intellectual rights management because a possibility for unlimited copying without
a loss of fidelity cause a considerable financial loss for copyright holders [1, 2, 3]. The
ease of content modification and a perfect reproduction in digital domain have promoted
the protection of intellectual ownership and the prevention of the unauthorized tampering
of multimedia data to become an important technological and research issue [4].

A fair use of multimedia data combined with a fast delivery of multimedia to users
having different devices with a fixed quality of service is becoming a challenging and
important topic. Traditional methods for copyright protection of multimedia data are
no longer sufficient. Hardware-based copy protection systems have already been easily
circumvented for analogue media. Hacking of digital media systems is even easier due
to the availability of general multimedia processing platforms, e.g. a personal computer.
Simple protection mechanisms that were based on the information embedded into header
bits of the digital file are useless because header information can easily be removed by a
simple change of data format, which does not affect the fidelity of media.

Encryption of digital multimedia prevents access to the multimedia content to an in-
dividual without a proper decryption key. Therefore, content providers get paid for the
delivery of perceivable multimedia, and each client that has paid the royalties must be
able to decrypt a received file properly. Once the multimedia has been decrypted, it can
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Fig. 1.1. A block diagram of the encoder.

be repeatedly copied and distributed without any obstacles. Modern software and broad-
band Internet provide the tools to perform it quickly and without much effort and deep
technical knowledge. One of the more recent examples is the hack of the Content Scram-
bling System for DVDs [5, 6]. It is clear that existing security protocols for electronic
commerce serve to secure only the communication channel between the content provider
and the user and are useless if commodity in transactions is digitally represented.

Digital watermarking has been proposed as a new, alternative method to enforce the
intellectual property rights and protect digital media from tampering. It involves a process
of embedding into a host signal a perceptually transparent digital signature, carrying a
message about thehost signal in order to "mark" its ownership. The digital signature
is called thedigital watermark . The digital watermark contains data that can be used
in various applications, including digital rights management, broadcast monitoring and
tamper proofing. Although perceptually transparent, the existence of the watermark is
indicated when watermarked media is passed through an appropriate watermark detector.

Figure 1.1 gives an overview of the general watermarking system [2]. A watermark,
which usually consists of a binary data sequence, is inserted into the host signal in the
watermark embedder. Thus, a watermark embedder has two inputs; one is the water-
mark message (usually accompanied by a secret key) and the other is the host signal (e.g.
image, video clip, audio sequence etc.). The output of the watermark embedder is the
watermarked signal, which cannot be perceptually discriminated from the host signal.
The watermarked signal is then usually recorded or broadcasted and later presented to the
watermark detector. The detector determines whether the watermark is present in the
tested multimedia signal, and if so, what message is encoded in it. The research area of
watermarking is closely related to the fields of information hiding [7, 8] and steganog-
raphy [9, 10]. The three fields have a considerable overlap and many common technical
solutions. However, there are some fundamental philosophical differences that influence
the requirements and therefore the design of a particular technical solution.Information
hiding (or data hiding) is a more general area, encompassing a wider range of problems
than the watermarking [2]. The termhiding refers to the process of making the infor-
mation imperceptible or keeping the existence of the information secret.Steganography
is a word derived from the ancient Greek wordssteganos[2], which meanscoveredand
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graphia, which in turn meanswriting. It is an art of concealed communication.
Therefore, we can definewatermarking systemsas systems in which the hidden mes-

sage is related to the host signal andnon-watermarking systems in which the message
is unrelated to the host signal. On the other hand, systems for embedding messages into
host signals can be divided intosteganographic systems, in which the existence of the
message is kept secret, andnon-steganographic systems, in which the presence of the
embedded message does not have to be secret. Division of the information hiding systems
into four categories is given in Table 1.1 [2].

Host Signal Dependent Message Host Signal Independent Message

Message Hidden Covert Communication Steganographic Watermarking

Message Known Non-steganographic Watermarking Overt Embedded Communications

Table 1.1. Four categories of information hiding systems.

The primary focus of this thesis is the watermarking of digital audio (i.e.,audio water-
marking ), including the development of new watermarking algorithms and new insights
of effective design strategies for audio steganography. The watermarking algorithms were
primarily developed for digital images and video sequences [11, 12]; interest and research
in audio watermarking started slightly later [13, 14]. In the past few years, several algo-
rithms for the embedding and extraction of watermarks in audio sequences have been
presented. All of the developed algorithms take advantage of the perceptual properties
of the human auditory system (HAS) in order to add a watermark into a host signal in a
perceptually transparent manner. Embedding additional information into audio sequences
is a more tedious task than that of images, due to dynamic supremacy of the HAS over
human visual system [11]. In addition, the amount of data that can be embedded trans-
parently into an audio sequence is considerably lower than the amount of data that can be
hidden in video sequences as an audio signal has a dimension less than two-dimensional
video files. On the other hand, many attacks that are malicious against image watermark-
ing algorithms (e.g. geometrical distortions, spatial scaling, etc.) cannot be implemented
against audio watermarking schemes.

1.1 Scope of research

1.1.1 Application areas

Digital watermarking is considered as an imperceptible, robust and secure communica-
tion of data related to the host signal, which includes embedding into and extraction from
the host signal. The basic goal is that embedded watermark information follows the wa-
termarked multimedia and endures unintentional modifications and intentional removal
attempts. The principal design challenge is to embed watermark so that it is reliably
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detected in a watermark detector. The relative importance of the mentioned properties
significantly depends on the application for which the algorithm is designed. For copy
protection applications, the watermark must be recoverable even when the watermarked
signal undergoes a considerable level of distortion, while for tamper assessment applica-
tions, the watermark must effectively characterize the modification that took place. In this
section, several application areas for digital watermarking will be presented and advan-
tages of digital watermarking over standard technologies examined.

Ownership Protection
In the ownership protection applications, a watermark containing ownership infor-

mation is embedded to the multimedia host signal. The watermark, known only to the
copyright holder, is expected to be very robust and secure (i.e., to survive common signal
processing modifications and intentional attacks), enabling the owner to demonstrate the
presence of this watermark in case of dispute to demonstrate his ownership. Watermark
detection must have a very small false alarm probability. On the other hand, ownership
protection applications require a small embedding capacity of the system, because the
number of bits that can be embedded and extracted with a small probability of error does
not have to be large.

Proof of ownership
It is even more demanding to use watermarks not only in the identification of the copy-

right ownership, but as an actualproof of ownership. The problem arises when adversary
uses editing software to replace the original copyright notice with his own one and then
claims to own the copyright himself. In the case of early watermark systems, the problem
was that the watermark detector was readily available to adversaries. As elaborated in [2],
anybody that can detect a watermark can probably remove it as well. Therefore, because
an adversary can easily obtain a detector, he can remove owner’s watermark and replace
it with his own. To achieve the level of the security necessary for proof the of ownership,
it is indispensable to restrict the availability of the detector. When an adversary does not
have the detector, the removal of a watermark can be made extremely difficult. However,
even if owner’s watermark cannot be removed, an adversary might try to undermine the
owner. As described in [2], an adversary, using his own watermarking system, might be
able to make it appear as if his watermark data was present in the owner’s original host
signal. This problem can be solved using a slight alteration of the problem statement.
Instead of a direct proof of ownership by embedding e.g. "Dave owns this image" water-
mark signature in the host image, algorithm will instead try to prove that the adversary’s
image is derived from the original watermarked image. Such an algorithm provides indi-
rect evidence that it is more probable that the real owner owns the disputed image, because
he is the one who has the version from which the other two were created.

Authentication and tampering detection
In the content authentication applications, a set of secondary data is embedded in the

host multimedia signal and is later used to determine whether the host signal was tam-
pered. The robustness against removing the watermark or making it undetectable is not
a concern as there is no such motivation from attacker’s point of view. However, forg-
ing a valid authentication watermark in an unauthorized or tampered host signal must be
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prevented. In practical applications it is also desirable to locate (in time or spatial dimen-
sion) and to discriminate the unintentional modifications (e.g. distortions incurred due
to moderate MPEG compression [15, 16]) from content tampering itself. In general, the
watermark embedding capacity has to be high to satisfy the need for more additional data
than in ownership protection applications. The detection must be performed without the
original host signal because either the original is unavailable or its integrity has yet to be
established. This kind of watermark detection is usually called ablind detection.

Fingerprinting
Additional data embedded by watermark in the fingerprinting applications are used

to trace the originator or recipients of a particular copy of multimedia file [17, 18, 19,
20, 21, 22, 23, 24, 25]. For example, watermarks carrying different serial or identity
(ID) numbers are embedded in different copies of music CDs or DVDs before distribut-
ing them to a large number of recipients. The algorithms implemented in fingerprinting
applications must show high robustness against intentional attacks and signal processing
modifications such as lossy compression or filtering. Fingerprinting also requires good
anti-collusion properties of the algorithms, i.e. it is not possible to embed more than one
ID number to the host multimedia file, otherwise the detector is not able to distinguish
which copy is present. The embedding capacity required by fingerprinting applications is
in the range of the capacity needed in copyright protection applications, with a few bits
per second.

Broadcast monitoring
A variety of applications for audio watermarking are in the field of broadcasting [26,

27, 28, 29]. Watermarking is an obvious alternative method of coding identification infor-
mation for an active broadcast monitoring. It has the advantage of being embedded within
the multimedia host signal itself rather than exploiting a particular segment of the broad-
cast signal. Thus, it is compatible with the already installed base of broadcast equipment,
including digital and analogue communication channels. The primary drawback is that
embedding process is more complex than a simple placing data into file headers. There
is also a concern, especially on the part of content creators, that the watermark would
introduce distortions and degrade the visual or audio quality of multimedia. A number of
broadcast monitoring watermark-based applications are already available on commercial
basis. These include program type identification, advertising research, broadcast cover-
age research etc. Users are able to receive a detailed proof of the performance information
that allows them to:
1. Verify that the correct program and its associated promos aired as contracted;
2. Track barter advertising within programming;
3. Automatically track multimedia within programs using automated software online.

Copy control and access control
In the copy control application, the embedded watermark represents a certain copy

control or access control policy. A watermark detector is usually integrated in a recording
or playback system, like in the proposed DVD copy control algorithm [5] or during the
development Secure Digital Music Initiative (SDMI) [30]. After a watermark has been
detected and content decoded, the copy control or access control policy is enforced by di-
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recting particular hardware or software operations such as enabling or disabling the record
module. These applications require watermarking algorithms resistant against intentional
attacks and signal processing modifications, able to perform a blind watermark detection
and capable of embedding a non-trivial number of bits in the host signal.

Information carrier
The embedded watermark in this application is expected to have a high capacity and to

be detected and decoded using a blind detection algorithm. While the robustness against
intentional attack is not required, a certain degree of robustness against common process-
ing like MPEG compression may be desired. A public watermark embedded into the host
multimedia might be used as the link to external databases that contain certain additional
information about the multimedia file itself, such as copyright information and licensing
conditions. One interesting application is the transmission of metadata along with mul-
timedia. Metadata embedded in, e.g. audio clip, may carry information about composer,
soloist, genre of music, etc.

1.1.2 Research areas

Watermarking algorithms can be characterized by a number of defining properties [2].
Six of them, which are most important for audio watermarking algorithms [31], represent
our research subareas. The relative importance of a particular subarea is application-
dependent, and in many cases the interpretation of a watermark property itself varies with
the application.

Perceptual transparency
In most of the applications, the watermark-embedding algorithm has to insert addi-

tional data without affecting the perceptual quality of the audio host signal [11, 32]. The
fidelity of the watermarking algorithm is usually defined as a perceptual similarity be-
tween the original and watermarked audio sequence. However, the quality of the water-
marked audio is usually degraded, either intentionally by an adversary or unintentionally
in the transmission process, before a person perceives it. In that case, it is more adequate
to define the fidelity of a watermarking algorithm as a perceptual similarity between the
watermarked audio and the original host audio at the point at which they are presented to
a consumer.

Watermark bit rate
The bit rate of the embedded watermark is the number of the embedded bits within a

unit of time and is usually given in bits per second (bps). Some audio watermarking ap-
plications, such as copy control, require the insertion of a serial number or author ID, with
the average bit rate of up to 0.5 bps. For a broadcast monitoring watermark, the bit rate
is higher, caused by the necessity of the embedding of an ID signature of a commercial
within the first second at the start of the broadcast clip, with an average bit rate up to 15
bps. In some envisioned applications, e.g. hiding speech in audio or compressed audio
stream in audio, algorithms have to be able to embed watermarks with the bit rate that is
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a significant fraction of the host audio bit rate, up to 150 kbps.

Robustness
The robustness of the algorithm is defined as an ability of the watermark detector to ex-

tract the embedded watermark after common signal processing manipulations. A detailed
overview of robustness tests is given in Chapter 3. Applications usually require robustness
in the presence of a predefined set of signal processing modifications, so that watermark
can be reliably extracted at the detection side. For example, in radio broadcast monitoring,
embedded watermark need only to survive distortions caused by the transmission process,
including dynamic compression and low pass filtering, because the watermark detection is
done directly from the broadcast signal. On the other hand, in some algorithms robustness
is completely undesirable and those algorithms are labeledfragile audio watermarking
algorithms.

Blind or informed watermark detection
In some applications, a detection algorithm may use the original host audio to extract

watermark from the watermarked audio sequence (informed detection). It often signif-
icantly improves the detector performance, in that the original audio can be subtracted
from the watermarked copy, resulting in the watermark sequence alone. However, if de-
tection algorithm does not have access to the original audio (blind detection) and this
inability substantially decreases the amount of data that can be hidden in the host sig-
nal. The complete process of embedding and extracting of the watermark is modeled as
a communications channel where watermark is distorted due to the presence of strong
interference and channel effects [33]. A strong interference is caused by the presence of
the host audio, and channel effects correspond to signal processing operations.

Security
Watermark algorithm must be secure in the sense that an adversary must not be able to

detect the presence of embedded data, let alone remove the embedded data. The security
of watermark process is interpreted in the same way as the security of encryption tech-
niques and it cannot be broken unless the authorized user has access to a secret key that
controls watermark embedding. An unauthorized user should be unable to extract the data
in a reasonable amount of time even if he knows that the host signal contains a watermark
and is familiar with the exact watermark embedding algorithm. Security requirements
vary with application and the most stringent are in cover communications applications,
and, in some cases, data is encrypted prior to embedding into host audio.

Computational complexity and cost
The implementation of an audio watermarking system is a tedious task, and it depends

on the business application involved. The principal issue from the technical point of view
is the computational complexity of embedding and detection algorithms and the number
of embedders and detectors used in the system. For example, in broadcast monitoring,
embedding and detection must be done in real time, while in copyright protection appli-
cations, time is not a crucial factor for a practical implementation. One of the economic
issues is the design of embedders and detectors, which can be implemented as hardware
or software plug-ins, is the difference in processing power of different devices (laptop,
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PDA, mobile phone, etc.).

1.2 Problem statement

1.2.1 Research problem

The fundamental process in each watermarking system can be modeled as a form of com-
munication where a message is transmitted from watermark embedder to the watermark
receiver [2]. The process of watermarking is viewed as a transmission channel through
which the watermark message is being sent, with the host signal being a part of that chan-
nel. In Figure 1.2, a general mapping of a watermarking system into a communications
model is given (more details are provided in Chapter 4). After the watermark is embed-

Fig. 1.2. A watermarking system and an equivalent communications model.

ded, the watermarked work is usually distorted after watermark attacks. The distortions
of the watermarked signal are, similarly to the data communications model, modeled as
additive noise.

When setting down the research plan for this study, the research of digital audio wa-
termarking was in its early development stage; the first algorithms dealing specifically
with audio were presented in 1996 [11]. Although there were a few papers published
at the time, a basic theory foundations were laid down and the concept of the "magic
triangle" introduced (Chapter 3). Therefore, it is natural to place watermarking into the
framework of the traditional communications system. The main line of reasoning of the
"magic triangle" concept (Chapter 3) is that if the perceptual transparency parameter is
fixed, the design of a watermark system cannot obtain high robustness and watermark
data rate at the same time. Thus, we decided to divide the research problem into three
specific subproblems. They are:

SP1: What is the highest watermark bit rate obtainable, under perceptual transparency
constraint, and how to approach the limit?
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SP2: How can the detection performance of a watermarking system be improved using
algorithms based on communications models for that system?

SP3: How can overall robustness to attacks of a watermark system be increased using
an attack characterization at the embedding side?

1.2.2 Research hypothesis

The division of the research problem into the three subproblems above define the follow-
ing three research hypotheses:

RH1: To obtain a distinctively high watermark data rate, embedding algorithm can be
implemented in a transform domain, with the usage of the least significant bit coding.

RH2: To improve detection performance, a spread spectrum method can be used, cross
correlation between the watermark sequence and host audio decreased and channel coding
introduced.

RH3: To achieve the robustness of watermarking algorithms, an attack characterization
can be introduced at the embedder, improved channel model can be derived and informed
detection can be used for watermark decoding.

1.2.3 Research assumptions

The general research assumption is that the process of embedding and extraction of wa-
termarks can be modeled as a communication system, where the watermark embedding
is modeled as a transmitter, the distortion of watermarked signal as a communications
channel noise and watermark extraction as a communications detector.

It is also assumed that modeling of the human auditory system and the determination
of perceptual thresholds can be done accurately using models from audio coding, namely
MPEG compression HAS model [15, 16].

The perceptual transparency (inaudibility) of a proposed audio watermarking scheme
can be confirmed through subjective listening tests in a predefined laboratory environment
with a participation of a predefined number of people with a different music education and
background.

A central assumption in the security analysis of the proposed algorithms is that an
adversary that attempts to disrupt the communication of watermark bits or remove the
watermark does not have access to the original host audio signal.

1.2.4 Research methods

In this thesis, a multidisciplinary approach is applied for solving the research subprob-
lems. The signal processing methods are used for watermark embedding and extracting
processes, derivation of perceptual thresholds, transforms of signals to different signal
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domains (e.g. Fourier domain, wavelet domain), filtering and spectral analysis. Com-
munication principles and models are used for channel noise modeling, different ways
of signalling the watermark (e.g. a direct sequence spread spectrum method, frequency
hopping method), derivation of optimized detection method (e.g. matched filtering) and
evaluation of overall detection performance of the algorithm (bit error rate, normalized
correlation value at detection). The basic information theory principles are used for the
calculation of the perceptual entropy of an audio sequence, channel capacity limits of
a watermark channel and during design of an optimal channel coding method. The re-
search methods also include algorithm simulations with real data (music sequences) and
subjective listening tests.

1.3 Outline of the thesis

Robust digital audio watermarking algorithms and high capacity steganography methods
for audio are studied in this thesis. The purpose of the thesis is to develop novel audio
watermarking algorithms providing a performance enhancement over the other state-of-
the-art algorithms with an acceptable increase in complexity and to validate their perfor-
mance in the presence of the standard watermarking attacks. Presented as a collection of
ten original publications enclosed as appendices I-X, the thesis is organized as follows.

Chapter 2 introduces the basic concepts and definitions of digital watermarking, in
order to place in context the main contributions of the thesis developed as the combina-
tion of digital signal processing, psychoacoustic modeling and communications theory.
The properties of the HAS that are exploited in the process of audio watermarking are
shortly reviewed. A survey of the key digital audio watermarking algorithms is presented
subsequently.

A general background and requirements for high capacity covert communications for
audio are presented in Chapter 3. A perceptual entropy measure for audio signals and
information theoretic assessment of the achievable data rates of a data hiding channel are
reviewed. In addition, the results which are in part documented in Papers IV and V, for
the modified time domain LSB steganography algorithm and a high bit rate algorithm in
wavelet domain are presented.

In Chapter 4, the contents of which are in part included in Papers I, II, III, and VII,
several spread spectrum audio watermarking algorithms in time domain are presented. A
general model for the spread spectrum-based watermarking is described in order to place
in context the developed algorithms. The parts of communication theory, which were used
in order to find a relationship between the capacity of the watermarked channel and the
distortion caused by a malicious attack, are given in this chapter as well.

Chapter 5, the contents of which are in part presented in Papers VI, VIII, IX, and X,
focuses on the increasing of the robustness of embedded watermarks using attack charac-
terization. Novel principles important for our attack characterization implementation are
presented, as well as watermark channel models of interest. A method for introducing the
attack characterization approach in an improved spread spectrum scheme is discussed.

Chapter 6 concludes the thesis discussing its main results and contributions. Directions
for further development and open problems for future research are also described.
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This chapter reviews the appropriate background literature and describes the concept of
information hiding in audio sequences. Scientific publications included into the literature
survey have been chosen in order to build a sufficient background that would help out in
solving the research subproblems problems stated in Chapter 1. In addition, Chapter 2
presents general concepts and definitions used and developed in more details in Chapters
3, 4 and 5. We decided to divide the theoretical background into three parts, presented in
Chapters 3, 4 and 5 because of the specific structure of the thesis, which presents three
different concepts for data hiding in audio, contrary to the usual concept of elaborating a
single idea. Therefore, the theoretical background in subjunction to the particular concept
is given as a separate subchapter in the respective chapters. In this manner, it much easier
for the reader to follow the presented concepts, and the chapters themselves can also be
read as standalone readings.

In the first section, the properties of thehuman auditory system(HAS) that are ex-
ploited in the process of audio watermarking are shortly reviewed. A survey of the key
digital audio watermarking algorithms and techniques is presented subsequently. The al-
gorithms are classified by the signal domain in which the watermark is inserted (time
domain, Fourier domain, etc.) and statistical method used for the embedding and extrac-
tion of watermark bits.

Audio watermarking initially started as a sub-discipline of digital signal processing,
focusing mainly on convenient signal processing techniques to embed additional informa-
tion to audio sequences. This included the investigation of a suitable transform domain
for watermark embedding and schemes for the imperceptible modification of the host au-
dio. Only recently watermarking has been placed to a stronger theoretical foundation,
becoming a more mature discipline with a proper base in both communication modeling
and information theory. Therefore, short overviews of the basics of information theory
and channel modeling for watermarking systems are given in this chapter.
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2.1 Overview of the properties of the HAS

Watermarking of audio signals is more challenging compared to the watermarking of
images or video sequences, due to wider dynamic range of the HAS in comparison with
human visual system (HVS) [11]. The HAS perceives sounds over a range of power
greater than 109:1 and a range of frequencies greater than 103:1. The sensitivity of the
HAS to the additive white Gaussian noise (AWGN) is high as well; this noise in a sound
file can be detected as low as 70 dB below ambient level.

On the other hand, opposite to its large dynamic range, HAS contains a fairly small
differential range, i.e. loud sounds generally tend to mask out weaker sounds. Addition-
ally, HAS is insensitive to a constant relative phase shift in a stationary audio signal and
some spectral distortions interprets as natural, perceptually non-annoying ones. [11].

Auditory perception is based on the critical band analysis in the inner ear where a
frequency-to-location transformation takes place along the basilar membrane. The power
spectra of the received sounds are not represented on a linear frequency scale but on lim-
ited frequency bands calledcritical bands [34]. The auditory system is usually modeled
as a bandpass filterbank, consisting of strongly overlapping bandpass filters with band-
widths around 100 Hz for bands with a central frequency below 500 Hz and up to 5000
Hz for bands placed at high frequencies. If the highest frequency is limited to 24000 Hz,
26 critical bands have to be taken into account.

Two properties of the HAS dominantly used in watermarking algorithms arefrequency
(simultaneous) masking(Section 2.1.1) andtemporal masking(Section 2.1.2)[34]. The
concept using the perceptual holes of the HAS is taken from wideband audio coding (e.g.
MPEG compression 1, layer 3, usually called mp3)[16]. In the compression algorithms,
the holes are used in order to decrease the amount of the bits needed to encode audio
signal, without causing a perceptual distortion to the coded audio. On the other hand, in
the information hiding scenarios, masking properties are used to embed additional bits
into an existing bit stream, again without generating audible noise in the audio sequence
used for data hiding.

2.1.1 Frequency masking

Frequency (simultaneous) masking is a frequency domain phenomenon where a low level
signal, e.g. a pure tone (the maskee), can be made inaudible (masked) by a simultaneously
appearing stronger signal (the masker), e.g. a narrow band noise, if the masker and maskee
are close enough to each other in frequency [34]. A masking threshold can be derived
below which any signal will not be audible. The masking threshold depends on the masker
and on the characteristics of the masker and maskee (narrowband noise or pure tone). For
example, with the masking threshold for the sound pressure level (SPL) equal to 60 dB,
the masker in Figure 2.1 at around 1 kHz, the SPL of the maskee can be surprisingly high
- it will be masked as long as its SPL is below the masking threshold. The slope of the
masking threshold is steeper toward lower frequencies; in other words, higher frequencies
tend to be more easily masked than lower frequencies. It should be pointed out that
the distance between masking level and masking threshold is smaller in noise-masks-



29

Fig. 2.1. Frequency masking in the human auditory system (HAS), reference sound pressure
level is p0 = 2 · 10−5 Pa.

tone experiments than in tone-masks-noise experiments due to HAS’s sensitivity toward
additive noise. Noise and low-level signal components are masked inside and outside the
particular critical band if their SPL is below the masking threshold. Noise contributions
can be coding noise, inserted watermark sequence, aliasing distortions, etc. Without a
masker, a signal is inaudible if its SPL is below the threshold in quiet, which depends
on frequency and covers a dynamic range of more than 70 dB as depicted in the lower
curve of Figure 2.1. The qualitative sketch of Figure 2.2 gives more details about the
masking threshold. The distance between the level of the masker (given as a tone in
Figure 2.2) and the masking threshold is calledsignal-to-mask ratio (SMR) [16]. Its
maximum value is at the left border of the critical band. Within a critical band, noise
caused by watermark embedding will be audible as long assignal-to-noise ratio(SNR)
for the critical band [16] is higher than its SMR. Let SNR(m) be the signal-to-noise ratio
resulting from watermark insertion in the critical band m; the perceivable distortion in a
given subband is then measured by the noise to mask ratio:

NMR(m)=SMR-SNR(m) (2.1)

Thenoise-to-mask ratioNMR(m) expresses the difference between the watermark noise
in a given critical band and the level where a distortion may just become audible; its value
in dB should be negative.

This description is the case of masking by only one masker. If the source signal con-
sists of many simultaneous maskers, a global masking threshold can be computed that
describes the threshold of just noticeable distortion (JND) as a function of frequency [34].
The calculation of the global masking threshold is based on the high resolution short-term
amplitude spectrum of the audio signal, sufficient for critical band-based analysis and is
usually performed using 1024 samples in FFT domain. In a first step, all the individual



30

Fig. 2.2. Signal-to-mask-ratio and Signal-to-noise-ratio values.

masking thresholds are determined, depending on the signal level, type of masker (tone
or noise) and frequency range. After that, the global masking threshold is determined by
adding all individual masking thresholds and the threshold in quiet. The effects of the
masking reaching over the limits of a critical band must be included in the calculation as
well. Finally, the global signal-to-noise ratio is determined as the ratio of the maximum
of the signal power and the global masking threshold [16], as depicted in Figure 2.1.

2.1.2 Temporal masking

In addition to frequency masking, two phenomena of the HAS in the time domain also
play an important role in human auditory perception. Those are pre-masking and post-
masking in time [34]. The temporal masking effects appear before and after a masking
signal has been switched on and off, respectively (Figure 2.3). The duration of the pre-
masking is significantly less than one-tenth that of the post-masking, which is in the in-
terval of 50 to 200 milliseconds. Both pre- and post-masking have been exploited in the
MPEG audio compression algorithm and several audio watermarking methods.
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Fig. 2.3. Temporal masking in the human auditory system (HAS).

2.2 General concept of watermarking

2.2.1 A general model of digital watermarking

Figure 2.4 gives an overview of the general model of the digital watermarking considered
in this chapter. A watermark messagem is embedded into the host signalx to produce
the watermarked signals. The embedding process is dependent on the key K and must
satisfy the perceptual transparency requirement, i.e. the subjective quality difference be-
tweenx ands (denoted as embedding distortiondemb) must be below the just noticeable
difference threshold. Before the watermark detection and decoding process takes place,
s is usually intentionally or unintentionally modified. The intentional modifications are
usually referred to as attacks; an attack produce attack distortiondatt at a perceptually
acceptable level. After attacks, a watermark extractor receives attacked signalr .

The watermark extraction process consists of two sub-processes, first, watermark de-
coding of a received watermark messagem̂ using key K, and, second, watermark detec-
tion, meaning the hypothesis test between:

HypothesisH0: the received datar is not watermarked with key K, and
HypothesisH1: the received datar is watermarked with key K.

Depending on a watermarking application, the detector performs an informed or blind
watermark detection. The termattack requires some further clarification. Watermarked
signals can be modified without the intention to impact the embedded watermark (e.g.
dynamic amplitude compression of audio prior to radio broadcasting). Why is this kind
of signal processing is called an attack? The first reason is to simplify the notation of
the general model of digital watermarking. The other, an even more significant reason, is
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that any common signal processing impairing an embedded watermark drastically will be
a potential method applied by adversaries that intentionally try to remove the embedded
watermark. The watermarking algorithms must be designed to endure the worst possi-
ble attacks for a given attack distortiondatt, which might be even some common signal
processing operation (e.g. dynamic compression, low pass filtering etc.). Furthermore, it
is generally assumed that the adversary has only one watermarked versions of the host
signalx. In fingerprinting applications, differently watermarked data copies could be ex-
ploited by collusion attacks. It has been proven that robustness against collusion attacks
can be achieved by a sophisticated coding of different watermark messages embedded
into each data copy [23]. However, it seems that the necessary codeword length increases
dramatically with the number of watermarked copies available to the adversary.

The separation between watermark decoding and watermark detection during the wa-
termark extraction should be clearly defined as well. Thus, it is important to differ be-
tween communicating a watermark messagem (embedding and decoding of a digital
watermark) and verifying whether the received datar is watermarked or not (watermark
detection). At first glance, the decision between the hypothesesH0 andH1 (watermark
detection) appears as a special case of decoding a binary watermark messagem ∈ {0, 1}.
This is not the case because in binary watermark communication the watermarked signal
and received signal have some special composition for m=0 and another special structure
for m=1. However, in the hypothesisH0 of the detection problem, the received data can
have any structure or, equivalently, no structure at all.

The importance of the key K has to be emphasized. The embedded watermarks should
be secure against detection, decoding, removal or modification or modification by adver-
saries. Kerckhoff’s principle [35], stating that the security of a crypto system has to reside
only in the key of a system, has to be applied when the security of a watermarking system
is analyzed. Therefore, it must be assumed that the watermark embedding and extraction
algorithms are publicly known, but only those parties knowing the proper key are able to
receive and modify the embedded information. The key K is considered a large integer
number, with a word length of 64 bits to 1024 bits. Usually, a key sequencek is de-
rived from K by a cryptographically secure random number generator to enable a secure
watermark embedding for each element of the host signal.

Several more detailed models of watermarking systems, including modeling of water-

Fig. 2.4. General model of digital watermarking.
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mark channel with encryption, are given in Chapter 4. Since three communication theory
based audio watermarking algorithms are described in Chapter 4, we decided to place
more detailed overview of the modeling the watermarking systems using data communi-
cations models in there, including all the relevant references.

2.2.2 Statistical modeling of digital watermarking

In order to properly analyze digital watermarking systems, a stochastic description of the
multimedia data is required. The watermarking of data whose content is perfectly known
to the adversary is useless. Any alteration of the host signal could be inverted perfectly,
resulting in a trivial watermarking removal. Thus, essential requirements on data being
robustly watermarkable are that there is enough randomness in the structure of the original
data and that quality assessments can be made only in a statistical sense. In this section,
basic statistical modeling of digital watermarking is introduced and general assumptions
are explained.

Let the original host signalx be a vector of lengthLx. Statistical modeling of data
means to considerx a realization of a discrete random processx [6]. In the most general
form, x is described by anLx-dimensional probability density function (PDF)px(x).

px(x) =
Lx∏

n=1

pxn(xn) (2.2)

with pxn(xn) being the nth marginal distribution ofx. A further simplification is to as-
sume independent, identically distributed (IID) data elements sopxn(xn) = pxj (xn) =
px(x). Most multimedia data cannot be modeled adequately by an IID random process
[6]. However, in many cases, it is possible to decompose the data into components such
that each component can be considered almost statistically independent. In most cases,
the multimedia data have to be transformed, or parts have to be extracted, to obtain a
component-wise representation with mutually independent and IID components. The wa-
termarking of independent data components can be considered as communication over
parallel channels.

Watermarking embedding and attacks against digital watermarks must be such that
the introduced perceptual distortion - the subjective difference between the watermarked
and attacked signal to the original host signal is acceptable. In the previous section, we
introduced the terms embedding distortiondemb and attack distortiondatt, but no specific
definition was given. The definition of an appropriate objective distortion measure is
crucial for the design and analysis of a digital watermarking system. A useful objective
distortion measure must be convenient for the statistical analysis of watermarking use-
cases and should be appropriate for the quality evaluation of real-world multimedia data.

The weighted mean-squared error (WMSE) distortion measure is adopted in the pub-
lished work in the field, as it usually offers a good compromise between appropriateness
for multimedia signals and convenience for statistical analysis. For a WMSE distortion



34

measure, the embedding distortiondemb and attack distortiondatt are given by [6]

demb = D(x, s, Θ) =
1

Lx

Lx∑
n=1

ΘnE
{
(xn − sn)2

}
, (2.3)

datt = D(x, r , Θ) =
1

Lx

Lx∑
n=1

ΘnE
{
(xn − rn)2

}
. (2.4)

In (2.3) and (2.4) E{·} denotes expectation andΘn ∈ R+ is the weight for the expected
squared error introduced in the nth data element.xn, sn, andrn are the nth elements of the
host audiox, watermarked sequencesand received signalr , respectively. The weightΘn

lets a simple adaptation of the objective distortion measure to the subjectively different
importance of data elements. For IID data, the weightsΘn are usually set to 1 since none
of the data elements is subjectively preferred and the WMSE is reduced to the simple
mean-squared error (MSE) distortion measure [6]. Furthermore, the WMSE distortion
measure fits well to the component-wise data description introduced above. It is very
common that identical weightsΘj can be used for all elements of the jth data component.
For example, the weighted embedding distortion in the discrete wavelet domain (DWT)
[36] can be written as

demb = D
({

xDWT
j

}
,
{

sDWT
j

}
,
{
ΘDWT

j

})
=

1
J

J∑

j=1

ΘDWT
j E

{(
xDWT

j − sDWT
j

)2
}

(2.5)
wherexDWT

j represents the jth element of the host audio sequencex in wavelet domain
andsDWT

j stands for the jth element of the watermarked sequences in wavelet domain.
In practice, an adversary can never evaluatedemb since he does not knowx. On the
other hand, it is fair to assume, during watermark embedding, that an adversary could
obtain a good approximation ofdemb. In contrast, measuring the attack distortion at the
detection side, byD(s, r , Θ), which is practical for an adversary, might be misleading
since a perfect attack(r = x, D(s, x, Θ) > 0) would be rated worse than no attack
(r = s, D(s, s,Θ) = 0).

The performance of different watermarking schemes for specific stochastic data is ex-
tensively analyzed in the literature. It is usually assumed that the embedder and the at-
tacker have access to the same stochastic model. Within this framework, provable lim-
its for optimal watermarking schemes and optimal attacks can be derived. In practice,
provable limits are difficult to obtain, because an improvement of the available statistical
models for the data at hand can help an adversary as well.

2.2.3 Decoding and detection performance evaluation

The ultimate goal of any watermarking algorithm is a reliable watermark extraction. In
general, extraction reliability for a specific watermarking scheme relies on the features
of the original data, on the embedding distortiondemb and on the attack distortiondatt.
Watermark extraction reliability is usually analyzed for different levels of attack distortion
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datt and fixed data features and embedding distortiondemb. Different reliability measures
are used for watermark decoding and watermark detection.

2.2.3.1 Watermark decoding

In the performance evaluation of the watermark decoding, digital watermarking is con-
sidered as a communication problem. A watermark messagem is embedded into the host
signalx and must be reliably decodable from the received signalr [6]. Low decoding er-
ror rates can be achieved only using error correction codes. For practical error correcting
coding scenarios, the watermark message is usually encoded into a vectorb of lengthLb

with binary elementsbn = 0, 1. Usually,b is also called the binary watermark message,
and the decoded binary watermark message isb̂. The decoding reliability ofb can be
described by the word error probability (WEP)

pw = Pr(m 6= m̂) = Pr(b 6= b̂), (2.6)

or by the bit error probability (BEP)

pb =
1
Lb

lb∑
n=1

Pr(bn 6= b̂n). (2.7)

The WEP and BEP can be computed for specific stochastic models of the entire water-
marking process including attacks. The predicted error probabilities can be confirmed
experimentally by a large number of simulations with different realizations of the water-
mark key K, the host signalx, the attack parameters and a watermark messagem. The
number of measured error events divided by the number of the observed events defines
the measured error rates, word error rate, WER and bit error rate BER.

Performance limits can be derived with methods borrowed from the information theory.
For example, the maximum watermark rate which can be received in principle without
errors is determined by the mutual informationI(r |m) between the transmitted watermark
message m and received datar and given by [37]

I(r |m) = h(r)− h(r |m) (2.8)

whereh(r) is the differential entropy ofr andh(r |m) is the differential entropy ofr con-
ditioned on the transmitted messagem. The PDFspr(r) andpr(r|m = m) are required
for the computation ofh(r) andh(r |m). I(r |m) can be achieved only for an infinite
number of data elements. For a finite number of data elements, a non-zero word error
probabilitypw or a bit error probabilitypb are unavoidable.

The channel capacityC of a specific communication channel is defined as the max-
imum mutual informationI(r;m) over all transmissions schemes with a transmission
power constrained to a fixed value [37]. The watermark capacityC is defined corre-
spondingly with a slight modification specific for watermarking scenarios. The capacity
analysis provides a good method for comparing the performance limits of different com-
munication scenarios, and thus is frequently employed in the existing literature. Since



36

there is still no solution available for the general watermarking problem, digital water-
marking is usually analyzed within certain constraints on the embedding and attacks.
Additionally, for different scenarios, the watermark capacity might depend on different
parameters (domain of embedding, attack parameters, etc.).

2.2.3.2 Watermark detection

Watermark detection is defined as the decision whether the received datar is watermarked
(H1) or not watermarked (H0) [6]. In general, both hypotheses cannot be separated per-
fectly. Thus, we define the probabilitypfp (false positive) as the case of acceptingH1

whenH0 is true and the probabilitypfn of acceptingH0 whenH1 is true (false negative).
In many applications, the hypothesis test must be designed to ensure a limited false pos-
itive probability, e.g.pfp < 10−12 for watermark detection in the context of DVD copy
protection. Another option for the evaluation of watermark detection is the investigation
of the total detection error probabilitype, which measures both possible error types.

In this thesis, the watermark detection is based on watermarking schemes that have
been designed for reliable communication of a binary watermark messageb. A subvector
f of lengthLf of the watermark messageb is used for a validity verification of a received
watermark messagêb. Without a loss of generality, an all-zero verification message can
be used since the security of the embedded watermark is ensured by a key sequencek
derived from the key K. Two simple watermark detection methods using the verification
bit vector f are discussed. In the first method, a detection based on a hard decision de-
coded verification is applied. In the second method, known encoded verification bits are
exploited to implement detection based on so-called soft values, where the soft values are
obtained by a further processing of the received signal.

Hard decision decoding
The verification messagef is encoded together with all remaining watermark message

bits to obtain the encoded watermark messagebc. During the watermark extraction, the
messagêb is as in the communication scenario. One fraction ofb̂ is the decoded wa-
termark verification messagêf that must be equal tof for a valid watermark messagêb.
Therefore, the hypothesis decision rule is given by:

H0 : f̂ 6= f (2.9)

H1 : f̂ = f (2.10)

The false positive probabilitypfp can be calculated based on the assumption thatPr(f̂n =
0|H0) = Pr(f̂n = 1|H1) = 0.5. The probabilitypfp = 0.5Lf

is obtained forLf

independent bitŝfn and depends only on the numberLf of verification bits. The false
negative probability depends on the bit error probabilitypb and the number of verification
bits

pfn = 1− (1− pb)
Lf . (2.11)

In the expression (2.11) statistically independent received verification bitsf̂n are assumed.
In practice, the interleaving of all bits inb before error correction encoding is useful to
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ensure the validity of those assumptions. A generalization of the decision rule given above
is to acceptH1 if the Hamming distance [37],dH(f̂n, f) is lower than a certain threshold.
In that case, the threshold could be designed to find a better trade-off betweenpfp andpfn.

Soft decision decoding
Detection based on a hard decision decoding is very simple. However, if the accurate

statistical models of the introduced attacks are known, soft decision decoding gives po-
tentially a better detection performance. The verification messagef is equal to the firstLf

bits of b and error correction coding ofb is such that the firstLfc bits of the coded wa-
termark messagebc are independent of the remaining watermark message bits. Without a
loss of generality, we can assume

(bc,0, ..., bc,Lfc−1) = f = 0. (2.12)

Let If denote the set of the indices of all data elements with embedded coded verification
bits. We assume that the PDFsPr(rIf

|H0) andPr(rIf
|H1) for receivingrIf

depending
on hypothesisH0 orH1, respectively, are known. Bayes’ solution to the hypothesis testing
problem can be applied, which is

Pr(rIf
|H1)

Pr(rIf
|H0)

> T ⇒ accept H1, else⇒ accept H0 (2.13)

whereT is the decision threshold.T is a constant depending on the a priori probabil-
ities for H1 andH0 and the cost connected with different decision errors. ForT = 1,
the decision rule above forms a maximum-likelihood (ML) detector. For equal a priori
probabilities, the decision error probability ispe = 1

2 (pfp + pfn). Assuming equal a
priori probabilities and equal costs for both hypotheses, the above decision rule can be
reformulated so thatH1 is accepted if

Pr =
Pr(rIf

|H1)
Pr(rIf

|H1) + Pr(rIf
|H0)

> 0.5 (2.14)

wherePr ∈ [0, 1] denotes the reliability that a received watermark messageb̂ is a valid
watermark message. For decision above,pfn and pfp depend directly on the PDFs
Pr(rIf

|H0) andPr(rIf
|H1).

2.2.4 Exploiting side information during watermark embedding

In most blind watermarking schemes, as in a blind spread spectrum watermarking, the host
signal is considered as interfering noise during the watermark extraction. Nevertheless,
recently it has been realized that a blind watermarking can be modeled as communication
with side information at the encoder. This has been published in [38] and [39] indepen-
dently. The main idea is that, although the blind receiver does not have access to the
host signalx, the encoder can exploit knowledge ofx to reduce the influence of the host
signal on the watermark detection and decoding. In [39], general concepts based on an
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Fig. 2.5. Communication with side information at the encoder over an AWGN channel.

early paper by Shannon [40] are described. Therein, the usefulness of side information
at the encoder is shown, without any detailed data of the principal improvements or the
optimal exploitation of the side information. Also, one of the assumptions of Shannon’s
paper is that the encoder knows only a causal part of the host signalx. Chen and Wor-
nell introduced a paper by Costa [41] from year 1983 to the watermarking community.
Costa considered communication with side information at the encoder over an AWGN
channel as depicted in Figure 2.5. A scheme that was derived by him performs well as
if the original data (the side information at the encoder) were perfectly known to the de-
coder. Chen and Wornell showed that their previously developed watermarking scheme
[38] based on quantization index modulation (QIM) can be considered as a part of Costa’s
scheme and that an extended version of QIM can perform as well as Costa’s scheme. It
is purely theoretical and thus several practical approaches to implement Costa’s scheme
were proposed [42, 43]. Figure 2.5 depicts a block diagram of the considered watermark-
ing embedding into IID host signalx of lengthLx and blind detection. The watermark
messagem ∈ 1, 2, . . . ,M is embedded with a constraint on the embedding distortion
demb. The embedding process exploiting side information of the host signal is separated
into two parts: first, an appropriate watermark sequencew representing the watermark
messagem is selected, and, second,w is added to the host signalx. The MSE distortion
measure is used so that

demb =
1

Lx
E

{
‖s− x‖2

}
=

1
Lx

E
{
‖w‖2

}
. (2.15)

The mapping ofm onto sequencew, also of lengthLx, is determined byx and the by
codebookWLx(K), which is encrypted with the watermark key K. Secrecy is obtained
by a pseudo-random selection of all entries inWLx(K).

The assumption is that the watermark sequencesw are zero mean and IID. The em-
bedding distortiondemb is then equal to the varianceσ2

w of the watermark elementswn.
The AWGN attack is independent of the characteristics of the original and watermarked
signal so that attack distortion isdatt = demb + σ2

v = σ2
w + σ2

v . It should be noted that
a blind spread spectrum watermarking (Section 2.3.4) also fits into the given model. For
the spread spectrum watermarking, the codebookWLx(K) contains all combinations of
possible messagesm and of spreading sequences derived from K, which is a finite number
of sequences. Furthermore, the performance limit of an optimal non-blind watermarking
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scheme can also be considered as the ultimate performance limit of blind watermarking.

2.2.5 The information theoretical approach to digital watermarking

Early research on watermarking can be characterized by an alternating advancement of
watermarking schemes and attacks. A theoretical approach to digital watermarking should
give answers about the convergence of this process. Some work in this direction has
been published independently by Su et al. [44, 45] and by Moulin et al. [46, 47]. In
[44], a power-density spectrum condition (PSC) for watermark signal has been derived,
which ensures that a linear estimation of embedded watermark is as hard as possible.
Independently, Moulin et al. [46] introduced the notion of the "information hiding game".
Information theoretic and game-theoretic concepts are exploited to set up a well-defined
theoretical framework for digital watermarking. In [46], Moulin et al. discuss the case of
watermarking IID Gaussian host signal. Extensions of this work to non-white Gaussian
original data and application to image watermarking have been developed by Su et al.
[44, 45] and Moulin et al. [46, 47].

A conceptual description of a watermarking game is given in [46]. Assume watermark-
ing of the host signalx with some statistical properties is investigated. First, a nonnegative
distortion function for the host signalx of lengthLx is defined. Second, the watermarking
process has to be characterized. This contains:
• The set of watermark messages M
• The embedding function depending on the watermark messagem and key K and con-
strained to the embedding distortiondemb and
• The decoding function, which depends on the key K.
Third, the attack channel, constrained by the attack distortiondatt, is defined by the prob-
ability matrixQ(r , s) describing the mapping of a certain watermarked signals of length
Lx to a certain attacked signalr of lengthLx in a statistical sense.

A watermarking process with embedding distortiondemb and attack channel with an
attack distortiondatt define the watermarking game between the embedded and attacker
subject to distortion pair(demb, datt). One suitable objective function of the game is the
achievable watermark rate. A certain watermark rate is achievable for(demb, datt) if there
is a watermark process subject to embedding distortiondemb with ratesR′ > R such that
the probability of the decoding error goes to zero as the signal lengthLx goes to infinity,
for any attack channel subject to attack distortiondatt.

The watermark capacityC(demb, datt) is the supremum of all achievable ratesR for
distortionsdemb, datt. The watermark capacity is achieved if the embedder chooses a
watermarking process that maximizes the achievable rateR while the attacker chooses
an attack channel that minimizes the achievable rateR. A compete solution to the above
described general watermarking game is currently not available. Thus, suboptimal wa-
termarking schemes, e.g. SS watermarking and suboptimal attack channels, for example,
AWGN attacks, are considered.
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2.3 Selected audio watermarking algorithms

Watermarking algorithms were primarily developed for digital images and video sequences;
interest and research in audio watermarking started slightly later. In the past few years,
several algorithms for the embedding and extraction of watermarks in audio sequences
have been presented. All of the developed algorithms take advantage of the perceptual
properties of the human auditory system (HAS) in order to add a watermark into a host
signal in a perceptually transparent manner. A broad range of embedding techniques goes
from simpleleast significant bit (LSB) scheme to the various spread spectrum methods.
The overview given in this section presents the best known general audio watermarking
algorithms, with an emphasis on the algorithms that were used as a basis for published
work (LSB algorithm, spread spectrum, improved spread spectrum, etc).

In the notation used throughout the section,x[i], i = 1, . . . , l(co) are the samples of
the host audio signal in the time domain. The range of the values of the audio signal is
x[i] ∈ [−1, 1), with 16-bit amplitude resolution, providing216 = 65536 quantization
levels in total. An additional index of the host audio sequencexoj denotes a subset of
the host audio. As a large majority of the audio watermarking algorithms use various
overlapping and nonoverlapping blocks in order to embed data,xj [i] is used to represent
the ith sample in the jth block of sizel(xj). Individual blocks of the host audio are used
to embed part of one bit, one bit, a number of bits or a complete watermarkm.

2.3.1 LSB coding

One of the earliest techniques studied in the information hiding and watermarking area of
digital audio (as well as other media types [48, 49, 50]) is LSB coding [51, 52]. A natural
approach in the case of the audio sequences is to embed watermark data by alternation of
the individual samples of the digital audio stream having the amplitude resolution of 16
bits per sample. It usually does not use any psychoacoustics model to perceptually weight
the noise introduced by LSB replacement. However, as will be elaborated in the Chapter
3, we developed a novel method to introduce a certain level of perceptual shaping of the
LSB coding.

The watermark encoder uses a subset of all available host audio samplesx chosen by
a secret key. The substitution operationxj [i] → m[i] on the LSBs is performed on this
subset. The extraction process simply retrieves the watermark by reading the value of
these bits. Therefore, the decoder needs all the samples of the watermarked audio that
were used during the embedding process. Usually,l(xo) À l(m). Thus the robustness
of the method can be improved by a repeated watermark embedding. The modification
of the LSBs of the samples used for data hiding introduces a low power additive white
Gaussian noise. As noted in the previous Chapter, HAS is very sensitive to the AWGN
and this fact limits the number of LSBs that can be imperceptibly modified.

The main advantage of the method is a very high watermark channel capacity; the use
of only one LSB of the host audio sample gives capacity of 44.1 kbps. The obvious disad-
vantage is the extremely low robustness of the method, due to fact that random changes of
the LSBs destroy the coded watermark [53]. In addition, it is very unlikely that embedded
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watermark would survive digital to analogue and subsequent analogue to digital conver-
sion. Since no computationally demanding transformation of the host signal in the basic
version of this method needs to be done, this algorithm has a very small algorithmic delay.
This permits the use on this LSB in real-time applications. This algorithm is a good basis
for steganographic applications for audio signals and a base for steganalysis [54, 55, 56].

2.3.2 Watermarking the phase of the host signal

Algorithms that embed watermark into the phase of the host audio signal do not use mask-
ing properties of the HAS, but the fact that the HAS is insensitive to a constant relative
phase shift in a stationary audio signal [11]. There are two main approaches used in the
watermarking of the host signal’s phase, first, phase coding [11, 57] and, second, phase
modulation [58, 59, 60].

The basicphase codingmethod was presented in [11]. The basic idea is to split the
original audio stream into blocks and embed the whole watermark data sequence into the
phase spectrum of the first block. One drawback of the phase coding method is a con-
siderably low payload because only the first block is used for watermark embedding. In
addition, the watermark is not dispersed over the entire data set available, but is implic-
itly localized and can thus be removed easily by the cropping attack. It is a non-blind
watermarking method (as the phase modulation algorithm) that limits the number of ap-
plications it is suitable for.

The watermark insertion in thephase modulationmethod is performed using an in-
dependent multiband phase modulation [61, 62]. Imperceptible phase modifications are
exploited in this approach by the controlled phase alternation of the host audio. To ensure
perceptual transparency by introducing only small changes in the envelope, the performed
phase modulation has to satisfy the following constraint

|∆φ(z)/∆z| < 30o, (2.16)

whereφ(z) denotes the signal phase and z is theBark scale. Each Bark constitutes one
critical bandwidth; the conversion of frequency between Bark and Hz is given in [31].
Using a long block size N (e.g.N = 214) algorithm attains a slow phase change over
time. The watermark is converted into a phase modulation by having one integer Bark
scale carry one message bit of the watermark, with the frequency in Hz. The robustness
of the modulated phase can be increased by using multiple Bark values carrying one
watermark bit.

The watermark extraction requires a perfect synchronization procedure to perform a
block alignment for each watermarked block, using the original signal as a reference. A
matching of the particular segments of the modulated phase to the encoded watermark
bits is possible if no significant distortions of the watermarked signal took place.

The data rate of the watermark depends on three factors: first, the amount of the redun-
dancy added, second, the frequency range used for watermark embedding, and, third, the
energy distribution of the host audio. If the selected Bark’s energy is too low, that Bark
should be skipped during the watermark embedding procedure. For audio signals sampled
at 44.1 kHz, 0-15 kHz (0-24 in Bark scale) proved to be a sensible range for watermark
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Fig. 2.6. Parameters of echo embedding watermarking method.

embedding. If, for example, two Barks carry one watermark bit, the watermark data rate
is (24/2)(44100/214) = 32bps.

2.3.3 Echo hiding

A number of developed audio watermarking algorithms [63, 64, 65] are based on echo
hiding method, described for the first time in [11]. Echo hiding schemes embed water-
marks into a host signal by adding echoes to produce watermarked signal. The nature of
the echo is to add resonance to the host audio. Therefore the acute problem of sensitivity
of the HAS towards the additive noise is circumvented in this method. After the echo has
been added, watermarked signal retains the same statistical and perceptual characteristics.

The offset (or delay) between the original and a watermarked signal is small enough
that the echo is perceived by the HAS as an added resonance. The four major parameters,
the initial amplitude, decay rate, "one" offset and "zero" offset are given in Figure 2.6. The
watermark embedding process can be represented as a system that has one of two possible
system functions. In the time domain, the system functions are discrete time exponentials,
differing only in the delay between impulses. Processing host signal through any kernel
in Figure 2.6 will result in an encoded signal. The delay (number of sample intervals)
between the original signal and the echo is dependent on the kernel being used, 1 if the
"one" kernel is used and 0 if the "zero" kernel is used.

The host signal is divided into smaller portions for encoding more than one bit. Each
individual portion can then be considered as an independent signal and echoed with the
desired bit. The final watermarked signal (containing several bits) is a composite of all
independently encoded signal portions. A smooth transition between portions encoded
with different bits should be adjusted using different methods to prevent abrupt changes
in the resonance in the watermarked signal. Information is embedded into a signal by
echoing the original signal with one of two delay kernels. Therefore, the extraction of the
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embedded information is to detect the spacing between the echoes. The magnitude of the
autocorrelation of the encoded signal’s cepstrum

F−1
{

log
(
|F (x)|2

)}
(2.17)

whereF represents the Fourier Transform andF−1 the inverse Fourier Transform can be
examined at two locations, corresponding to the delays of the "one" and "zero" kernel,
respectively. If the autocepstrum is greater atδ1 than it is atδ0, an embedded bit is
decoded as "one". For the multiple echo hiding, all peaks present in the autocepstrum
are detected. The number of the peaks corresponding to the delay locations of the "one"
and "zero" kernels are then counted and compared. If there are more peaks at the delay
locations for the "one" echo kernel, the watermark bit is decoded as "one".

Increased robustness of the watermark algorithm requires high-energy echoes to be
embedded which increases audible distortion. There are several modifications to the basic
echo-hiding algorithm. Xu et al. [66] proposed a multi-echo embedding technique to re-
duce the possibility of echo detection by third parties. The technique has clear constraints
regarding the increase of the robustness, because the audio timbre is noticeably changed
with the sum of pulse amplitude [67]. Oh et al. [67] proposed an echo kernel compris-
ing multiple echoes by both positive and negative pulses with different offsets (closely
located) in the kernel, of which the frequency response is smooth in lower bands and has
large ripples in high frequency. Although these large ripples are perceptually less signif-
icant for a large majority of audio sequences, they can become audible as an unpleasant
noise in the sections where audio signal contains low energy.

2.3.4 Spread spectrum watermarking

In a number of the developed algorithms [68, 69, 70, 71, 72], the watermark embed-
ding and extraction are carried out using spread-spectrum (SS) technique. SS sequence
can be added to the host audio samples in time domain [68, 73, 74], to FFT coefficients
[72, 75, 76, 77], in subband domain [14, 78, 79, 80, 81], to cepstral coefficients [82, 83]
and in a compressed domain [84, 85]. If embedding takes place in a transform domain, it
should be located in the coefficients invariant to common watermark attacks as amplitude
compression, resampling, lowpass filtering, and other common signal processing tech-
niques. The idea is that after the transform, any significant change in the signal would
significantly decrease the subjective quality of the watermarked audio.

Watermark is spread over a large number of coefficients and distortion is kept below
the just noticeable difference level (JND) by using the occurrence of masking effects of
the human auditory system (HAS). Change in each coefficient can be small enough to be
imperceptible because the correlator detector output still has a high signal to noise ratio
(SNR), since it despreads the energy present in a large number of coefficients. A general
model for SS-based watermarking is shown in Figure 2.7. Vectorx is considered to be
the original host signal already in an appropriate transform domain. The vectory is the
received vector, in the transform domain, after channel noise. Asecret key K is used by
a pseudo random number generator(PRN) [86, 87] to produce a chip sequence with



44

zero mean and whose elements are equal to+σu or−σu. The sequenceu is then added
to or subtracted from the signalx according to the variableb, whereb assumes the values
of +1 or -1 according to the bit (or bits) to be transmitted by the watermarking process
(in multiplicative algorithms multiplication operation is performed instead addition [88]).
The signals is the watermarked audio signal. A simple analysis of SS-based watermarking
leads to a simple equation for the probability of error. Thus, we define inner product and
norm as [89]:〈x, u〉 =

∑N−1
i=0 xiui and‖x‖ =

√
〈x, x〉 whereN is the length of the

vectorsx, s, u, n, andy in Figure 2.7. Without a loss of generality, we assume that we are
embedding one bit of information in a vectors of N transform coefficients. Then, the bit
rate is1/N bits/sample. That bit is represented by the variableb, whose value is either +1
or -1. Embedding is performed by

s = x + bu (2.18)

The distortion in the embedded signal is defined by‖s− x‖. It is easy to see that for the
embedding equation (2.23), we have

D = ‖bu‖ = ‖u‖ = σu. (2.19)

The channel is modeled as an additive noise channely = s + n, and the watermark
extraction is usually performed by the calculation of the normalized sufficient statisticsr:

r =
〈y, u〉
〈u, u〉 =

〈bu + x + n, u〉
σu

= b + cx + cn (2.20)

and estimating the embedded bit asb̂ =sign(r), wherecx = 〈x, u〉 / ‖u‖ and cn =
〈n, u〉 / ‖u‖. Simple statistical models for the host audiox and the attack noisen are
assumed. Namely, both sequences are modeled as uncorrelated white Gaussian random
processes:xi ∼ N(0, σ2

x) andni ∼ N(0, σ2
n). Then, it is easy to show that the sufficient

statisticsr are also Gaussian variables, i.e.:

r ∼ N(mr, σ
2
r),mr = E[r] = b, σ2

r =
σ2

x + σ2
n

Nσ2
u

(2.21)

Fig. 2.7. General model for SS-based watermarking.
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Specifically, let us elaborate the case whenb is equal to 1. In that case, an error occurs
whenr < 0, and therefore, the error probabilityp is given by

p = Pr
{

b̂ < 0|b = 1
}

=
1
2

erfc

(
mr

σr

√
2

)
=

1
2

erfc

(√
σ2

uN

2(σ2
x + σ2

n)

)
(2.22)

where erfc(·) is complementary error function. The equal error probability is obtained
under the assumption thatb = −1. A plot of that probability as a function of the SNR (in
this case defined as(mr/σr) is given in Figure 2.8. For example, from Figure 2.8, it can

Fig. 2.8. Error probability as a function of the SNR.

be seen that if an error probability lower than10−3 is needed, SNR becomes:

mr

σr
> 3 ⇒ Nσ2

u > 9
(
σ2

x + σ2
n

)
(2.23)

or more generally, to achieve an error probabilityp we need:

Nσ2
u > 2

(
erfc−1(p)

)2 (
σ2

x + σ2
n

)
(2.24)

Equation (2.29) shows that we can make a trade-off between the length of the chip se-
quenceN with the energy of the sequenceσ2

u. It lets us to simply compute eitherN or
σ2

u, given the other variables involved.

2.3.5 Improved spread spectrum algorithm

The development of the improved spread spectrum (ISS) method was gradual and con-
sisted of several phases. In [39], the authors described the importance of decreasing the
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influence of the host signal on the watermark extraction process, analyzing a spread spec-
trum system with the fixed cross correlation value. Using framework from [39], in [90]
the authors have derived three different watermarking approaches, corresponding to the
cases of "maximized robustness", "maximized correlation coefficient" and "constant ro-
bustness". Still, the problem of minimizing the bit error rate at a fixed average distortion
level during watermark embedding process is not addressed. Final ISS method has been
proposed in [91]. It removes the host signal as a source of interference, gaining signifi-
cantly on the robustness of watermark detection.

The main idea behind the ISS is that by using the encoder knowledge about the signal
(or more precisely,cx, the projection ofx on the watermark), we can enhance perfor-
mance by modulating the energy of the inserted watermark to compensate for the signal
interference. The new embedding approach is defined by a slight modification to the
SS embedding, i.e. the amplitude of the inserted chip sequence is varied by a function
µ(cx, b):

s = x + µ(cx, b)u (2.25)

where, as in the standard SS method,cx = 〈x, u〉 / ‖u‖. It is obvious that the traditional
SS is a particular case of ISS. In this notation, SS is a special case of the ISS in which
the functionµ is made independent ofcx. The simplest version of the ISS is to restrict
µ to be a linear function. Not only is this much simpler to analyze, but it also provides
a significant part of the gains in relation to traditional SS. In this case, and due to the
symmetry of the problem in relation tocx andb, we have

s = x + (αb− λcx)u (2.26)

The parametersα andλ control the distortion level and the removal of the carrier distor-
tion on the detection statistics. Traditional SS is obtained by settingα = 1 andλ = 0. If
AWGN channel model is used as we did for SS method,y = s+ n, the receiver sufficient
statistics are:

r =
〈y, u〉
‖u‖ = αb + (1− λ)cx + cn (2.27)

Therefore, asλ tends to 1, the more the influence ofcx is removed fromr. The detector
is the same as in SS, i.e., the detected bit is sign(r). The expected distortion of the ISS
system is given by:

E[D] = E[‖s− x‖] = E[‖αb− λcx‖2σ2
u] =

(
α2 +

λ2σ2
x

Nσ2
u

)
σ2

u (2.28)

To force the average distortion of the ISS system to be equal to that of the traditional SS
system, we forceE[D] = σ2

u and therefore

α =

√
Nσ2

u − λ2σ2
x

Nσ2
u

(2.29)

In order to compute the error probability, the mean and the variance of the sufficient
statisticr are needed. They are given by

mr = αb, σ2
r =

σ2
n + (1− λ)2σ2

x

Nσ2
u

(2.30)
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Fig. 2.9. Error probability as a function of λ. Solid lines represent a 10 dB SNR, and dashed
lines represent a 7 dB SNR. The three lines correspond to values of equal to N·WNR=5, 10,
and 20 (with higher values having smaller error probability).

Thus, the error probability of the ISS system can be computed as:

p = Pr {r < 0|b = 1} =
1
2

erfc

(
mr

σr

√
2

)
=

1
2

erfc

(√
Nσ2

u − λ2σ2
x

2(σ2
n + (1− λ)2σ2

x)

)
(2.31)

Error probability functionp can be rewritten as a function of the watermark-to-noise ratio
(WNR) σ2

u/σ2
x and the SNRσ2

x/σ2
n [91]

p =
1
2

erfc


 1√

2

√√√√√
Nσ2

u

σ2
x
− λ2

σ2
n

σ2
x

+ (1− λ)2


 . (2.32)

In Figure 2.9, we plotp as a function ofλ for various values of SNR andN ·WNR. Note
that by a proper selection of the parameterλ, the error probability in the proposed method
can be made several orders of magnitude better than using traditional SS. For example,
with a signal-to-interference ratio of 10 (i.e., 10 dB), we get a reduction in the error rate
from p0 = 10−5 for traditional SS top = 1.55 · 10−43 for the ISS method, which is
a reduction of over 37 orders of magnitude in the error probability. Higher SNR values,
which can happen in practical applications, lead to even higher gains. As it can be inferred
from Figure 2.9, the error probability varies withλ, with the optimum value usually close
to one. The expression for the optimum value for can be computed [91] from the error
probability by settingδp/δλ = 0 and is given by

λOPT =
1
2




(
1 +

σ2
n

σ2
x

+
Nσ2

u

σ2
x

)
−

√(
1 +

σ2
n

σ2
x

+
Nσ2

u

σ2
x

)2

− 4
Nσ2

u

σ2
x


 (2.33)

In addition, it is clear from that forN large enough,λOPT → 1 asSNR →∞.
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2.3.6 Methods using patchwork algorithm

The patchwork technique was first presented in [11, 92] for embedding watermarks in im-
ages. It is a statistical method based on hypothesis testing and relying on large data sets.
As a second of CD quality stereo audio contains 88200 samples, a patchwork approach is
applicable for the watermarking of audio sequences as well. The watermark embedding
process uses a pseudorandom process to insert a certain statistic into a host audio data set,
which is extracted with the help of numerical indexes (like the mean value), describing
the specific distribution. The method is usually applied in a transform domain (Fourier,
wavelet, etc.) in order to spread the watermark in time domain and to increase robustness
against signal processing modifications [93, 94, 95]. Embedding steps are summarized as
follows:

1. Map the secret key and the watermark to the seed of a random number generator.
After that, generate an index setI = {I1, . . . , I2n} whose elements are pseudo-randomly
selected integer values from[K1,K2], where1 ≤ K1 ≤ K2 ≤ N . Note that two index
sets,I0 andI1, are needed to denote watermark bits 0 and 1, respectively. The choice of
K1 andK2 is a crucial step in embedding the watermark because these values control the
trade-off between the robustness and the inaudibility of the watermark.

2. Let F = {F1, . . . , FN} be the coefficients whose subscript denote frequency range
from the lowest to the highest frequencies. DefineA = a1, . . . , an as the subset ofF
whose subscript corresponds to the first n elements of the index setI0 or I1 according to
the embedded code with similar definition forB = b1, . . . , bn with the last n elements,
that isai = FI andbi = FIn+I , for i = 1, . . . , n.

3. Calculate the sample meansā = 1
n

∑n
i=1 ai and b̄ = 1

n

∑n
i=1 bi, respectively and

the pooled sample standard error:

S =

√∑n
i=1(ai − ā)2 +

∑n
i=1(bi − b̄)2

n(n− 1)
(2.34)

4. The embedding function presented below introduces a location-shift change

a∗i = ai + sign(ā− b̄)
√

C
S

2
, b∗i = bi − sign(ā− b̄)

√
C

S

2
(2.35)

5. Finally, replace the selected elementsai andbi by a∗i andb∗i , respectively, and then
apply the inverse DCT.

Since the proposed embedding method introduces relative changes of two sets in lo-
cation, a natural test statistic which is used to decide whether or not the watermark is
embedded should concern the distance between the means ofA andB. Thus, the water-
mark extracting process is done as follows:

1. Map the secret key and watermark to the seed of random number generator and then
generate the index setsI0 andI1, which was applied to the encoding process.
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2. Obtain the subsetsA1 and B1 from F = {F1, . . . , FN} and compute the sample
means and the pooled sample standard errors. Obtain the subsetsA0 = {a01, , a0n} and
B0 = {b01, , b0n} from the index setI0, A1 = {a11, , a1n} andB1 = {b11, , b1n} from
the index setI1, all from F = {F1, . . . , FN} and compute the sample meansā0, ā1, b̄0

andb̄1 and the pooled standard errorsS0 andS1.

3. Calculate the test statistics

T 2
0 =

(ā0 − b̄0)2

S2
0

, T 2
1 =

(ā1 − b̄1)2

S2
1

(2.36)

and defineT 2 as the larger value obtained from two statistics.

4. CompareT 2 with the thresholdM and decide that watermark is embedded ifT 2 > M .
Only whenT 2 > M , bit 0 is assigned ifT 2

0 > T 2
1 , and bit 1 otherwise.

Therefore, the patchwork technique can be observed as the linear comparator function in
the spread-spectrum technique.

2.3.7 Methods using various characteristics of the host audio

Several audio watermarking algorithms developed in the recent years use different sta-
tistical properties of the host audio and modify them in order to embed watermark data.
Those properties are pitch values, number of salient points, difference in energy of two
adjacent blocks, etc. However, modifications of the host signal statistical properties do
influence the subjective quality of the audio signal and have to be performed in a way
that does not produce distortions above the audible threshold. Usually, these methods are
robust to signal processing modifications, but offer a low watermark capacity.

Papers [96, 97] introduced content-adaptive segmentation of the host audio according
to its characteristics in time domain. Since the embedding parameters are dependent of
the host audio, it is along the right direction to increase tamper resistance. The basic idea
is to classify the host audio into a predetermined number of segments according to its
properties in time domain, and encode each segment with an embedding scheme, which
is designed to best suit this segment of audio signal, according to its features in frequency
domain.

In paper [98], the temporal envelope of the audio signal is modified according to the
watermark. A number of signal processing operations are needed for embedding a multi-
bit payload watermark. First, the filter extracts the part of the audio signal that is suitable
to carry the watermark information. The watermarked audio signal is then obtained by
adding an appropriately scaled version of the product of watermark and filtered host audio
to the host signal. Watermark detector consists of two stages: the symbol extraction stage
and the correlation and decision stage.

The algorithm presented in [99] embeds the watermark by deciding for each mute
period in the host audio whether to extend it by a predefined value. In order to detect the
watermark, the detector must have access to the original length of all mute periods in the
host audio.
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The method described in [100] uses the pitch scaling of the host audio, realized using
short time Fourier transform, to embed the watermark. The correlation ratio, computed
during the embedding procedure is quantized with different quantization steps in order to
embed bit 0 and 1 of the watermark stream.

In papers [101, 102], salient points are used as basis for watermark embedding resis-
tant to desynchronization attacks. Asalient pointis defined as the point in time where
the variation of energy of the host audio signal has a large positive peak; it defines the
synchronization point for the watermarking process without embedding additional syn-
chronization tags. The embedding of the watermark bits in [101] is performed using a
statistical mean manipulation of the cepstral coefficients and in [102] by altering the dis-
tance between two salient points.

The algorithms presented in [103, 104] use a feature extraction of the host audio signal
in order to tailor the specific embedding algorithm for the given segment of the host audio.
In [103], authors use neural networks for the feature extraction and classification, while
in [104] the feature extraction is done using a nonlinear frequency scale technique.

2.4 Summary

Chapter 2 reviews the literature and describes the concept of information hiding in audio
sequences. Scientific publications included in the literature survey have been chosen in
order to build a sufficient background that would help out in solving the research subprob-
lems stated in Chapter 1.

In the first section, the properties of thehuman auditory system(HAS) that are ex-
ploited in the process of audio watermarking are shortly reviewed. A survey of the key
digital audio watermarking algorithms and techniques is presented subsequently. The al-
gorithms are classified by the signal domain in which the watermark is inserted and statis-
tical method used for embedding and extraction of watermark bits. Audio watermarking
initially started as a sub-discipline of digital signal processing, focusing mainly on con-
venient signal processing techniques to embed additional information to audio sequences.
This included the investigation of a suitable transform domain for watermark embedding
and schemes for imperceptible modification of the host audio. Only recently has wa-
termarking been placed to a stronger theoretical foundation, becoming a more mature
discipline with a proper base in both communication modeling and information theory.
Therefore, short overviews of the basics of information theory and channel modeling for
watermarking systems were given in this chapter.



3 High capacity covert communications

The simplest visualization of the requirements of information hiding in digital audio is
so calledmagic triangle [7], given in Figure 3.1. Inaudibility, robustness to attacks, and
the watermark data rate are in the corners of the magic triangle. This model is convenient
for a visual representation of the required trade-offs between the capacity of the water-
mark data and the robustness to certain watermark attacks, while keeping the perceptual
quality of the watermarked audio at an acceptable level. It is not possible to attain high
robustness to signal modifications and high data rate of the embedded watermark at the
same time. Therefore, if a high robustness is required from the watermarking algorithm,
the bit rate of the embedded watermark will be low and vice versa, high bit rate water-
marks are usually very fragile in the presence of signal modifications. However, there are
some applications that do not require that the embedded watermark has a high robustness
against signal modifications. In these applications, the embedded data is expected to have
a high data rate and to be detected and decoded using a blind detection algorithm. While
the robustness against intentional attacks is usually not required, signal processing modi-
fications, like noise addition, should not affect the covert communications [2]. To qualify
as steganography applications, the algorithms have to attain statistical invisibility as well.
The algorithms presented in papers I-X were not designed to be statistically undetectable,
thus the steganalysis of the algorithms is not in the scope of this thesis.

One interesting application of high capacity covert communications is public water-
mark embedded into the host multimedia that is used as the link to external databases
that contain certain additional information about the multimedia file itself, e.g. copyright
information and licensing conditions [2, 105, 106, 107, 108]. Another application with
similar requirements is the transmission of meta data along with multimedia. Meta data
embedded in, e.g. audio clip, may carry information about a composer, soloist, genre of
music, etc. [105, 109].

Another possible application of high data rate information hiding schemes is audio
streaming [105]. In many current audio-streaming applications, the audio bit stream is
sent over the Internet using the TCP protocol. Supplementary data that contains informa-
tion about audio content is, on the other hand, sent through the unreliable connectionless
UDP protocol. As a result, the additional information is often lost in transmission, due
to network congestion or router malfunction. Using audio data scheme, the need to use
UDP for sending additional information can be circumvented by directly hiding additional
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Fig. 3.1. Magic triangle-three contradictory requirements of watermarking.

information within the audio stream.
An additional application scenario is data hiding within analogue communication chan-

nels [105]. In order to hide data, analogue audio is sent thorough an analogue-to-digital
(A/D) converter, and the output of the A/D converter is forwarded to the data hiding sys-
tem. The output of the data hiding system is then fed through a digital-to-analogue (D/A)
and modulated onto the analogue communications channel. The application is useful for
users that want to receive extra data but do not have the requisite bandwidth for receiv-
ing the additional information. A high data rate covert communications system is able to
transmit significant amounts of extra information for various applications.

3.1 High data rate information hiding using LSB coding

The algorithm that uses LSB coding is the natural choice of the watermarking algorithm
that fulfils the requirements of high data rate and low robustness against signal mod-
ifications. It is one of the earliest and simplest steganography techniques and, as in
cases of other known algorithms, it has first been developed for watermarking of images
[49, 40, 54] and video stream [53, 110].

The watermark encoder uses a subset of all available host audio signal samples chosen
by a secret key. The substitution operation on the LSBs is performed on this subset.
The extraction process simply retrieves the watermark by reading the value of these bits.
Therefore, the decoder needs all the samples of the watermarked audio that were used
during the embedding process.

The main advantage of the method is a very high watermark channel capacity; the
use of only one LSB of the host audio sample gives the capacity of 44.1 kbps if a mono
audio signal, sampled at 44.1 kHz, is used. The obvious disadvantage is the method’s
extremely low robustness, due to the fact that the random changes of the LSBs destroy
the coded watermark [53]. As no computationally demanding transformation of the host
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signal needs to be done, this algorithm has a very small computational complexity. This
permits the use of the LSB coding in real-time applications.

An increase in the embedding capacity is proportional to the number of the LSBs used
for data hiding; two or more bits per sample could be used in order to enhance the bit
rate of the hidden information. However, the increase of the number of the samples used
during LSB coding introduces a low power additive white Gaussian noise. As already
noted, the HAS is very sensitive to the AWGN and this limits the number of the LSBs
that can be imperceptibly modified. In addition to a subjective quality degradation, the
probability of the statistical detection of the embedded watermark increases as well [54,
55, 56, 110, 111].

There are two types of LSB insertion methods, fixed-size and variable-size embedding.
The former embeds the same number of watermark bits in each sample of the host audio
sequence. For the variable-size embedding method, the number of LSBs used for data
hiding in each sample depends on the local characteristics of the host audio. It is still an
open research issue how to adapt these local characteristics of the host audio in order to
estimate the maximum embedding capacity.

3.1.1 Proposed high data rate LSB algorithm

The data hiding in the LSBs of audio samples in time domain is one of the simplest
watermarking algorithms with very high data rates of hidden information. However, the
adjusting of the LSBs of audio samples introduces noise that becomes audible as the num-
ber of the LSBs used for data hiding increases. An experimental test, performed in our
laboratory, showed that for a large majority of music styles, three is the maximum number
of the modified LSBs that leaves the watermarked audio perceptually transparent, if the
host audio is represented with a 16 bits per sample resolution in time domain. Listening
tests were carried out with a large collection of audio samples; furthermore individuals
with a different background and musical experience took part. None of the tested audio
sequences suffered audible perceptual distortion when 3 LSBs of its samples in time do-
main were used for data hiding. In addition, in certain music styles (loud rock or concert
recording), the limit is even 4 or 5 LSBs per sample.

The embedding of additional information into consecutive LSBs injects AWGN to the
levels that are above the JND level. Since the sensitivity of the HAS towards the additive
random noise is high, a further increase of the watermark data rate using the standard LSB
coding method is impossible.

We developed an advanced LSB coding method, which is able to shift the limit for
transparent LSB data hiding from three to four LSBs, using a three-step approach (Paper
V). Figure 3.2 illustrates the overall block-scheme of the proposed algorithm. In the
first step, the algorithm embeds watermark bits to four LSBs of the host audio using a
standard method, where the LSBs of the host audio’s sample are simply replaced by four
watermark bits. As noted above, in the majority of music styles, this causes a perceptual
distortion of watermarked audio. Thus, some additional signal processing is needed in
order to preserve the subjective quality of the watermarked audio.

Generally, if we embedk (k < 16) bits in a sample, replacing thek LSBs of the sam-
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Fig. 3.2. Block-scheme of the proposed algorithm.

ple, the maximum embedding error introduced is2k − 1. Considering216 levels of a
16-bit audio sequence, there are216−k levels whosek LSBs are identical to thek embed-
ded bits. In order to obtain the highest possible embedding transparency, the most similar
value among these216−k values should replace the original one. This is performed in the
second step of the algorithm using a simple method to search for the level of audio closest
to the original audio level as follows:
Let a(n) be the original level of audio,s(n) the level obtained by embeddingk LSBs
directly, ands′(n) be the level of audio obtained by flipping the value of (k+1)th LSB of
s(n). The minimum-error level must bes(n) or s′(n). Let e(n) be difference between
a(n) ands(n) ande′(n) be error betweena(n) ands′(n). If e(n) < e′(n), thens(n) will
be used to replacea(n), otherwises′(n) is selected. This method is called a minimum-
error replacement (MER) and has roots in high capacity image steganography algorithms
[49, 112]. Using this method, we reduced the maximum embedding error from2k − 1 to
2k−1.

However, the loss of 6 dB of SNR that is introduced by increasing the number of the
used LSBs by one cannot be compensated completely, because MER helps only in certain
combinations of the incoming bits of information to be hidden. In order to decrease these
perceptual artifacts, the third part of the algorithm is executed. This step has an error
diffusion approach similar to improved grey-scale quantization (IGS), used for decreasing
a false contouring in a quantized image, occurring due to an insufficient number of grey
levels that would represent the smooth regions in the image [113, 114, 115]. In the digital
image processing, the value of the embedding error is usually evenly spread to the bottom
and right neighboring pixels, as shown in Figure 3.3. However, as audio signal is one-
dimensional signal in time, an error caused by LSB modification can be diffused only in
the "towards right", in other words, diffused to the samples that will be watermarked later.
Let e(n) denote the embedding error of the samplea(n), then the next four consecutive
samples of the host audio are modified according to:a(n + 1) = a(n + 1) + e(n)/2,
a(n+2) = a(n+2)+e(n)/4, a(n+3) = a(n+3)+e(n)/4, a(n+4) = a(n+4)+e(n)/8.

The values that determine the distribution of embedding error to the consecutive sam-
ples have purposely been chosen to be a power of1/2. This means that all the weighting
of the consecutive samples of the host audio is performed by a simple shift right operation
where the number of shifts depends on the given weight. For example, thea(n+3) sample
is just shifted right for two positions and two zeros are written at the two most significant
bits of the sample’s binary representation. The weighting operation, performed in the
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Fig. 3.3. Error diffusion in improved grey-scale quantization used in image processing.

given manner, facilitates a fast computation and keep the increase of the computational
complexity of the overall algorithm minimal in comparison with the standard embedding
method. All the modifications of the standard LSB algorithm are done at the embedding
side while the extracting side carries the same computational burden. The increase in
the number of computational operations will be executed by the main server in the mul-
timedia distribution network. As it provides the multimedia content and performs data
hiding, it has a far more computational power than receiving devices (laptops, PDAs, mo-
bile phones, etc.). Therefore, the increase in computational complexity will not affect the
end users.

The results of the subjective tests showed (Paper V) that the perceptual quality of wa-
termarked audio, when embedding is done by the proposed algorithm, is higher in compar-
ison with the standard LSB embedding. Test results indicated that a modified algorithm
with four LSBs used for data hiding performs practically the same as the original LSB
embedding algorithms with three LSBs used. This confirms that the algorithm in Paper
V succeeds in increasing the bit rate of the hidden data for one third without affecting the
perceptual transparency of the resulting audio signal.

Current storage requirements for digital mono audio signals are 705.6 kbps (sampling
at 44.1 kHz and resolution 16 bits per sample). On the other hand, a reported perceptual
entropy for wideband monophonic audio signals is in the range of 4-5 bits per sample
[32, 116]. This implies that for an uncompressed audio signal, a significant amount of
additional information can be inserted into the signal without causing a perceptual dis-
tortion. The theoretical bound is therefore from 485.1 to 529.2 kbps in data rate. The
simple LSB coding method in time domain is able to inaudibly embed 3-4 bits per sam-
ple (132.3-176.4 kbps), which is far from a theoretically achievable rate, mostly due to a
poor shaping of noise introduced by embedding and operation in time domain (Paper V).
Therefore, a perceptual entropy measure of audio signals [116] and information theoretic
assessment of the achievable data rates of a data hiding channel is necessary to develop a
scheme that could obtain higher data rates.
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3.2 Perceptual entropy of audio

It is a well-known fact, obtained during decades of audio compression research, that only
a few bits per sample are needed to represent compact disk quality music. When per-
forming a bit rate reduction of audio or speech signals that will be presented to the HAS,
the objective is to introduce either imperceptible or inoffensive distortion during the com-
pression process. This implies that for uncompressed music, noise can be injected into
the host audio signal without being audible to the end user [32]. In audio steganography,
this fact is used not for compression, but for embedding additional data. An estimate
of the perceptual entropy of audio signals is created from the combinations of several
noise masking measures. The results of tone-masking-noise and noise-masking-tone, as
well as research on critical bands and spreading functions are combined in order to esti-
mate the short term masking templates for audio signals [116]. The perceptual entropy
of each short-term section of the audio signal is estimated as the number of bits required
to encode the short-term spectrum of the signal to the resolution required to inject noise
below the masking template level. When a bit rate reduction of an audio (or speech)
signal is presented to the HAS, the objective is to introduce either imperceptible or inof-
fensive distortion during the compression process. The masking threshold for the audio

Fig. 3.4. Perceptual entropy calculation algorithm.

signal indirectly shows the amount of quantization that may be applied in the frequency
domain, i.e., the quantization, according to the masking model, that may be done with-
out corrupting the signal such that it can be distinguished from the original [116]. The
part of the signal that can be modified without causing a subjective quality degradation
is therefore perceptually redundant, and the part that must be preserved during the com-
pression process represents real information that can be quantized and measured. In an
ideal transform coder, the quantization step size and the number of levels in the quantizer
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for each spectrum component could be set independently and without side information to
communicate the level or bit allocations to the decoder. If the quantization step size in
this ideal coder were set such that the total noise injected at each frequency corresponds
to the threshold (the minimum number of quantization levels are used) then the number
of bits required to encode the entire transform represents an estimate of the minimum
number of bits necessary to transmit that block of audio. The total rate, divided by the
number of samples coded, represents the per sample rate. The minimum per sample rate
of this ideal transform coder needed to transparently encode an audio signal is called the
perceptual entropy of the signal. This model is attractive, because it takes into account
all of the artifacts and redundancies in the audio signal in the same manner as the HAS
does (pitch, short term spectral model, etc.). There are three main parts of the perceptual
entropy calculation algorithm [116], given in Figure 3.4:
1. Windowing of audio signal and transformation to Fourier domain
2. Calculation of the masking threshold
3. Calculation of the number of bits required to quantize spectrum of the signal.

The windowing of the signal is performed using a Hanning window and frequency
transformation by FFT of length 2048. The first 1024 complex lines are kept (including
the DC and lines counted as one line). The steps involved in calculating the masking
threshold are critical band analysis, applying the spreading function to critical bands,
calculating the spread masking threshold, accounting for absolute thresholds and, finally,
relating the spread masking threshold to the critical band masking threshold.

3.2.1 Calculation of the perceptual entropy

As noted above, the perceptual entropy is calculated by measuring the actual number of
quantizer levels to follow the signal in the frequency domain, given a step size in the
quantizer that will result in noise energy equal to the audibility threshold [32]. Audibility
thresholdTi is usually defined in the power domain and quantization energy is spread
acrossk spectral lines in each critical band. It is also assumed that the quantization noise
is spread uniformly across the entire critical band. The distribution of the quantization
error is uniform in the amplitude domain; it gives noise variance equal toσ2/12.

The step sizeSi is calculated as follows. First, the energy is spread across the entire
band, i.e. the energy at each spectral frequency is equal toTi/ki. Since the real and
imaginary parts of the spectrum are quantized independently, the energy at each frequency
must be divided in half, specifically the energy at each spectral component isTi/2ki. The
noise energy, due to quantization isσ2/12, thereforeσ2/12 = Ti/2ki and sinceσ = Si

we obtainSi =
√

6Ti/ki, whereSi is the quantizer step size. This is done in each of the
n critical bands:

NRe(ω) = abs

(
nint

(
Re(ω)

Si

))
, NIm(ω) = abs

(
nint

(
Im(ω)

Si

))
(3.1)

for eachσ within the critical bandi. The function abs(·) represents the scalar abso-
lute value function and nint(·) a function that returns the nearest integer to its argument.
NRe,Im(ω) represents the integer quantized value of the each spectral line. Then, for each
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ω, and individually for real and imaginary parts,NRe,Im(ω) is altered as follows:
if NRe,Im(ω) = 0, thenN ′

Re,Im(ω) = 0
if NRe,Im(ω) 6= 0, thenN ′

Re,Im(ω) = log2 (2NRe,Im(ω) + 1).
This operation assigns a bit rate of zero bits to any signal with an amplitude that does not
need to be quantized, and assigns a bit rate oflog2(number of levels) to those that must
be quantized. If, for example, the integer number is 1, three levels (-1, 0, +1) are required
to quantize the particular line. As the signs of different spectral lines are random, the
sign information must be included. When no levels are necessary, the transmission of the
sign bit is unnecessary as well, and a 0 is assigned to that line. The total bit rate is then
calculated as:

Total Rate=
π∑

ω=0

(N ′
Re(ω) + N ′

Im(ω)) (3.2)

and the rate per sample (perceptual entropy) of the audio sequence is given by

Perceptual Entropy=
Total Rate

2048
. (3.3)

The termperceptual entropy, used throughout this section, therefore indicates the 2048
sample perceptual entropy, regardless of the sampling rate or bandwidth of the signal.
The block-to-block changes in perceptual entropy values increase as the effective window
length decreases, but the mean and extreme values do not change significantly [116].

Reported perceptual entropy for wideband monophonic audio signals is in the range
of 4-5 bps, taking into account all the spectral complexity, spectrum range and dynamic
range requirements. This implies that for an uncompressed audio signal, a significant
amount of additional information can be inserted into signal without causing a perceptual
distortion. There is obviously a considerable gap between the currently available data
rates for high capacity covert communications and theoretically obtainable data rates [52,
105, 107].

As noted above, a simple LSB coding method in time domain is able to inaudibly
embed 3-4 bits per sample (132.3-176.4 kbps) of additional data, which is far from a the-
oretically achievable rate, due to the generation of AWGN caused by LSB embedding in
time domain. Therefore, an information theoretic analysis of the capacity of information
hiding channel is necessary in order to design a scheme that can offer higher data rates.

3.3 Capacity of the data-hiding channel

First we consider a simple data-hiding channel shown in Figure 3.5 [117, 118]. Here,
X ∼ (

fX(x), σ2
x

)
is the message to be embedded,Z ∼ (

fZ(x), σ2
z

)
is the additive noise

channel andY ∼ (
fY (x), σ2

y

)
is the received signal at the output of the channel. We also

assumeX andZ are independent, implying thatσ2
y = σ2

z + σ2
x. The channel capacity is

given by:

C = max
fX(x)

I(X, Y) = max
fX(x)

h(Y)− h(Y | X) = max
fX(x)

h(Y)− h(Z)[bits] (3.4)

I(X, Y) is the mutual information betweenX and Y. For a given statisticsfZ(z) and
σ2

z , the entropy ofY should be maximized,h(Y) = − ∫
fY (y) log2(fY (y))dy [bits], us-
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Fig. 3.5. (a) Simple data-hiding channel model, (b) Data-hiding channel model after Z is
changed to a Gaussian distributed variable.

ing a suitable distributionfX(x) of the messageX. For a givenσ2
y the maximum value

of h(Y) = 1
2 log2(2πeσ2

y) bits is achieved whenY has a normal distribution. For in-
stance, the maximum value ofh(Y) is achievable if bothfZ(z) andfX(x) are normally
distributed. However, for an arbitrary distributionfZ(z) and a fixedσ2

x, the maximum
achievable value ofh(Y) is not immediately obvious. This is becauseZ is usually altered
in such a manner that the amount of information inZ is not altered, but the statistics ofZ
is changed to Gaussian distributedZg. Therefore, for the purpose of calculating the chan-
nel capacity, we can replacefZ(z) by N(0, σ2

zg) andh(Z) = h(Zg) = 1
2 log2(2πeσ2

zg)
and we get:

C = max
fX(x)

h(Y)− h(Zg)[bits] =
1
2

log2

(
1 +

σ2
x

σ2
zg

)
[bits] (3.5)

The general data-hiding channel is usually decomposed into multiple channels, as hiding
process is performed in a transform domain [117]. The decomposition is performed by
the forward and inverse transform, as depicted in Figure 3.6. Signal decomposition intoL
bands results inL parallel channels with two noise sources in each channel. Letσ2

ij , j =
1, ..., L be the variances of the coefficients of each band of the decomposition. Let the
corresponding Gaussian variances beσ2

igj . If σ2
pj is the variance of the processing noise

in the jth channel, the total capacity of theL parallel channels is given by:

Ch =
N2

2L

L∑

j=1

log2

(
1 +

T 2
j

σ2
igj + σ2

pj

)
[bits] (3.6)

for a sequence ofN samples. In the equation 3.6,Tj is the masking threshold of bandj,
in other words, the maximum power of the embedded message permitted in bandj. In the
case of no-processing noise (or if the processing noise is negligible), and we assume that
all the channel have the same probability distribution function (such thatKσij = Kσigj),
the channel capacity is given by:

Ch =
N2

2L

L∑

j=1

log2

(
1 +

K

σ2
ij

)
≈ N

2L
log2


1 +

L∑

j=1

K

σ2
ij


 [bits] (3.7)
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Fig. 3.6. Decomposition of the data-hiding channel into multiple channels.

It is clear that theminimum channel capacity is obtained whenσij = σ,∀j or whenno
decompositionis employed [118]. A transform with a good energy compaction or high
gain of transform coding (GTC) [118] would result in more imbalance of the coefficient
variances, resulting in an increased channel capacity. Therefore, a wavelet decomposition
or discrete cosine transform (DCT) are good decompositions for low processing noise
scenarios. The termprocessing noisehere refers to equivalent additive noise which ac-
counts for the reduction in correlation between the transform coefficients of the original
signal and the transform coefficients of the audio signal obtained after MPEG compres-
sion, noise addition, low pass filtering, etc. On the other hand, the reduction in capacity
with an increase of processing noise tends to be lower for transforms which are not used
in compression methods, like DFT. While severe MPEG compression is certain to re-
move almost all high frequency components of DCT coefficients, it will not affect the
high frequency DFT at the same extent. A signal decomposition with a low GTC is gen-
erally more immune to processing noise than decomposition with a high GTC and should
predominantly be used in applications demanding robust watermarks. Therefore, signal
decompositions with a high GTC, like the wavelet transform or DCT, are more suitable
for high data rate steganography applications, where processing noise variance is low,
because no intentional attacks are expected.

3.4 Proposed high data rate algorithm in wavelet domain

Using results from the information theory basis given above, we designed a novel audio
steganography method with a high data rate of embedded information (Paper IV). The
application scenario was to embed a MPEG compressed video sequence (high data rate
requirement) into the host audio signal (mono signal, sampled at 44100 Hz). One example
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of the practical implementation of the algorithm was the hiding of the artist’s video clip in
the artist’s audio track (CD format). If the watermarked music clips are, e.g. compressed
to the mp3 format, the embedded video clip can not be extracted. Therefore, no attacks or
unintentional signal manipulations were expected, because it is the interest of the end user
to obtain both multimedia files at the high quality data rate. The implemented method is a
case of a fragile watermarking, as any distortion of the host audio signal leads to a severe
quality loss of the embedded video clip.

Due to a low processing noise, the optimal selections of the signal decomposition al-
gorithm are the wavelet decomposition and DCT. The wavelet domain is more suitable
for frequency analysis because of its multiresolutional properties that provide access both
to the most significant parts and details of signal’s spectrum. Therefore, we are able to
make easily the trade-off between the amount of the embedded information and percep-
tual distortion caused by information hiding, by handling subbands with different levels
of power and perceptual significance.

Data hiding in the LSBs of the wavelet coefficients is practicable due to the near perfect
reconstruction properties of the filterbank. The Discrete Wavelet Transform (DWT) de-
composes the signal into low-pass and high pass components subsampled by two, whereas
the inverse transform performs the reconstruction. We decided to make use of the simplest
quadrature mirror filter - Haar filter. The Haar basis is obtained with a multiresolution of
piecewise constant functions [36]. The scaling function is equal to one. As the equivalent
filter has two non-zero coefficients equal to2−1/2 at n = 0 andn = 1 Haar wavelet is
defined as:

ψ(t) =




−1 if 0 ≤ t < 1/2;

1 if 1/2 ≤ t < 1;
0 otherwise.

(3.8)

The Haar wavelet has the shortest support among all orthogonal wavelets, and it is the
only quadrature mirror filter that has a finite impulse response [36]. FIR filters can be
designed to be linear phase filters, which is important from the point of view of the per-
ceptual transparency, as the linear phase filters delay the input signal, but do not distort
its phase. In addition, the Haar filter is computationally simple to implement, as on most
DSP processors, the FIR calculation can be done by looping a single instruction. This
property gives the opportunity for real time applications of the proposed algorithm. FIR
filters have also desirable numeric properties. In practice, all DSP filters must be imple-
mented using a finite precision arithmetic and a limited number of bits. As FIR filters
have no feedback, they can usually be implemented using fewer bits, and the designer has
fewer practical problems to solve related to non-ideal arithmetic, in comparison with IIR
filters [36].

Signal decomposition into the low-pass and high pass part of the spectrum is performed
in five successive steps. After subband decomposition of 512 samples of host audio,
using the Haar filter and decomposition depth of five steps, the algorithm produces 512
wavelet coefficients. All 512 wavelet coefficients are then scaled using the maximum
value inside the given subband and converted to binary arrays in the two’s complement.
A fixed number of the LSBs are thereupon replaced with bits of information that should
be hidden inside the host audio. Coefficients are then converted and scaled back to the
original order of magnitude and an inverse transformation is performed. The details of
the decomposition of the signal and subsequent data embedding are given in Figure 3.7.



62

Fig. 3.7. Signal decomposition prior to LSB embedding.

The scheme was implemented using the integer wavelet transform (IWT) as well; in that
case, there is no need for transforming coefficients (real values) into the integer format
used for LSB embedding because IWT returns integers and would allow implementation
on software with a less precise calculation than the Matlabc© 16 bit floating point system.

The experimental results presented in the Paper IV are given for the case when wavelet
coefficients of each of 32 subbands are modified in order to hide information. This is far
from the optimal data hiding concept, as it has already been shown that the modification of
the first four blocks of subband coefficients causes the largest degradation of perceptual
quality of host audio [81, 119, 120, 121]. Nevertheless, we tried to make a balanced
comparison between the proposed algorithm and the time domain LSB coding, for the
case when we use the same embedding method and add noise to the host audio in all parts
of audio spectrum. Some other simple solutions that would add to the performance of the
proposed data hiding algorithm because the randomizing of input data and removal of the
DC bias caused by LSB replacement are not used during the tests for the same reason.

During the subjective quality experiments (Paper IV), evaluation started with audio
excerpts with three replaced LSBs for time domain and seven LSBs in wavelet domain
because embedding to lower LSBs did not cause any noticeable perceptual distortion.
The subjective experiments showed that the subband information hiding scheme has a
large advantage over the classic LSB algorithm. The wavelet domain algorithm produces
stego objects perceptually hardly discriminated from the original audio clip even when 8
LSBs of coefficients are modified, providing up to 5 bits per sample (220.5 kbps) higher
data rate in comparison to time domain LSB algorithm.

The achieved bit rate of hidden information (Paper IV) is clearly above the bit rate
obtained by other developed audio steganography schemes [52, 105]. In addition, the
scheme can easily be modified to be more robust against processing noise (achievable bit
rate would be decreased though) and it was used as a basis for the development of a robust
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audio watermarking technique in wavelet domain [122].

3.5 Summary

Chapter 3 presented an insight in the first research subproblem of the thesis and the general
background and requirements for high bit rate covert communications for audio. The
subproblem was characterized by the following question: What is the highest watermark
bit rate obtainable, under perceptual transparency constraint, and how to approach the
limit?

Details and experimental results for the modified time domain LSB steganography al-
gorithm were discussed. The results of subjective tests showed that the perceptual quality
of watermarked audio, when embedding is done by the proposed algorithm, is higher in
comparison with the standard LSB embedding. The tests confirmed that the described
algorithm succeeds in increasing the bit rate of the hidden data for one third without af-
fecting the perceptual transparency of resulting audio signal. However, the simple LSB
coding method in time domain is able to inaudibly embed only 3-4 bits per sample, which
is far from the theoretically achievable rate, mostly due to a poor shaping of noise intro-
duced by embedding and operation in time domain. Therefore, a perceptual entropy and
information theoretic assessment of the achievable data rates of a data hiding channel was
necessary to develop a scheme that could obtain higher data rates.

A high bit rate algorithm in wavelet domain was developed based on these findings.
The wavelet domain was chosen for data hiding due to its low processing noise and suit-
ability for frequency analysis because of its multiresolutional properties that provide ac-
cess both to the most significant parts and details of signal’s spectrum. The experiments
showed that the wavelet information hiding scheme has a large advantage over the time
domain LSB algorithm. The wavelet domain algorithm produces stego objects perceptu-
ally hardly discriminated from the original audio clip even when 8 LSBs of coefficients
are modified, providing up to 5 bits per sample higher data rate in comparison with time
domain LSB algorithm.



4 Spread spectrum audio watermarking in time domain

One of the first audio watermarking algorithms that we developed (Paper I) is a time
domain spread spectrum algorithm. It embeds a spread-spectrum-based watermark into
an uncompressed, raw audio by slightly modifying the values of samples of the host au-
dio in time domain. The main motivation was the development of an algorithm with a
low computational complexity and with an embedding and extraction of watermarks in
time domain. One of the most robust methods already developed for audio watermark-
ing was a time domain algorithm [68]. Therefore, we tried not to use transforms, like
DFT, or cepstrum transform that shift the host audio to transform domains and back to
temporal domain consequently. It would definitely be hard to prove mathematically that
watermarking in time domain gives smaller computational complexity in comparison with
other, non-temporal algorithms because it is hard to compare complexity with each de-
veloped watermarking scheme. However, time domain algorithms have at least a lower
implementation complexity and a smaller number of blocks in embedding and extraction
algorithms.

4.1 Communications model of the watermarking systems

In order to describe the link between watermarking and standard data communications,
the traditional model of a data communications system is often used to model watermark-
ing systems. In Chapter 2, the basic components of a data communications system, related
to the watermarking process, are highlighted. One of the most important parts of the com-
munications models of the watermarking systems is the communications channel, because
a number of classes of the communications channels have been used as a model for distor-
tions imposed by watermarking attacks [123, 124, 125, 126]. The other important issue is
the security of the embedded watermark bits, because the design of a watermark system
has to take into account access that an adversary can have to that channel.
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4.1.1 Components of the communications model

The main elements of the traditional data communications model are depicted in Figure
4.1. The main objective is to transmit a messagem across a communications channel.
The channel encoder usually encodes this message in order to prepare it for transmission
over the channel. The channel encoder is a function that maps each possible message into
a code word drawn from a set of signal that can be transmitted over the communications
channel. The code word mapped by the channel encoder is denoted asx. It is common,
as we deal with digital data and signals, that the encoder consists of a source coder and a
modulator. The source coder removes the redundancy from the input message and maps
a message into a sequence of symbols drawn from some alphabet. The duty of the modu-
lator is to convert a sequence of symbols from the source coder into a signal suitable for
transmission through a physical communications channel. It can use different modulation
techniques such as amplitude, phase or frequency modulation.

The definite form of the channel encoder’s output depends on the type of the transmis-
sion channel used in a particular model, but it is usually described as a sequence of real
values, quantized to some arbitrary precision. In addition, we assume that the range of
values of the channel encoder is limited in some way, usually by a power or amplitude
constraint.

The signalx is subsequently sent over the communications channel, which is assumed
to be noisy. The consequence of the presence of noise is that the received signal, conven-
tionally denoted asy, is generally different fromx. The extent of the change depends of
the level of the noise present in the channel and is modeled here as additive noise. In other
words, the transmission channel is modeled as adding a random noisen to the encoder’s
outputx. At the receiver part of the system, the received signal,y, is forwarded, as the
input signal, to the channel decoder which inverts the encoding process and attempts to
correct for errors caused by the presence of noise. This is a function that maps transmitted
signals into messagesmr. The decoding process is typically a many-to-one function, so
that correct decoding is possible even using noisy coded words [127, 128]. If the channel
code is well matched to a given channel model, the probability that the decoded message
contains an error is negligibly small.

Fig. 4.1. Standard model of a communications system.
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4.1.2 Models of communications channels

During the modeling of a communications system given in Figure 4.1, the parameters of
the transmission channel are usually predetermined. That is, the function that is used for
the modeling of the transmission channel cannot be modified during the transmission. The
channel is generally characterized using a conditional probability distributionPY |X(y),
which gives the probability of obtainingy as the received signal if signalx was transmitted
over the transmission channel.

Diverse communications channels can be classified in relation to the type of the noise
function they apply to the signal and the way the distortion is introduced. The model from
the Figure 4.1 is, as already mentioned above, an additive noise channel in which signals
are distorted by the addition of noise signaln

y = x + n (4.1)

The noise signal is usually modeled as independent of the signalx. The simplest and
most important channel for analysis is a Gaussian channel where each element of the
noise signal,n(i), is drawn independently from a normal distribution with zero mean
and a varianceσ2

n. The variance models the level of distortion of the signal introduced
by channel noise and zero mean distribution means that channel noise does not have an
impact on the DC component of the transmitted signal. Despite being simple, this model
is the most frequently used one in the watermark literature and it was extensively used in
our papers as well.

However, several non-additive communications channel models are also important.
One of the frequently used models is the fading channel model [129] which cause the
variation of the transmitted signal’s power during the transmission. Generally, this varia-
tion can be modeled as a scaling of the signal

y = v(t)x (4.2)

where0 < v(t) < 1 is an unknown parameter that vary slowly during the transmission
or with each use of the channel. Such a channel might also include an additive noise
component, rendering

y = v(t)x + n. (4.3)

There is only a small number of watermark papers that use a fading channel model for the
description of the channel noise, one of the described models is given in Chapter 5 and
Paper VIII.

4.1.3 Secure data communications

An important issue in watermarking is the security of the embedded watermark bits be-
cause the design of a watermark system has to take into account access that an adversary
can have to the communications channel. In particular, we are interested in applications
that demand security against passive and active adversaries. In the case of passive attacks,
an adversary monitors the transmission channel and attempts to illegally read the message.
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Fig. 4.2. A model of a communications channel with encryption.

In the active attack case, the adversary actively tries either to disable communication or
transmit unauthorized messages.

There are two main methods of defence against attacks, as described in Chapter 2,
first, cryptography and, second, spread spectrum communications. Prior to transmission,
cryptography is used to encrypt a message using a secret key and after that the encrypted
message is transmitted. On the receiver side, the encrypted message is received and then
decrypted using the same or a related key to reveal the message. The block scheme is
given in Figure 4.2. Cryptography introduces two advantages in a data communications
system. The first is to prevent passive attacks in the form of an unauthorized reading of the
message and the second is to prevent active attacks in the form of illicit writing. However,
cryptography does not necessary prevent the adversary from knowing that a message is
being transmitted. In addition, cryptography is helpless if an adversary intents to distort
or remove a message before it is delivered to receiver.

Signal jamming (the deliberate effort by an adversary to inhibit communication be-
tween transmitter and receiver) was a great problem for military communications and has
led to the development of the spread spectrum communication. In those systems, the
modulation is performed according to a secret code that spreads the signal across a wider
bandwidth than is regularly required. The code can be modeled as a form of the key used
in the channel coder and decoder, as depicted in Figure 4.3. One of the examples of the
spread spectrum communications is the frequency hopping method, one of the earliest
and simplest spread spectrum techniques. In a frequency-hopping system, the transmitter
broadcasts a message by first transmitting a part of the message bit stream on one fre-
quency, the next fraction of the bit stream on the another frequency, and so on. A secret
key that is known at the receiver as well as on the transmitter side controls the order of
frequencies used for frequency hopping. Without a key, an adversary could monitor the
transmission. The disruption of the transmission is also very difficult, because it could be
done only by introducing noise at all possible frequencies, which would require too much
power.

The cryptography and SS communications are complementary. The SS guarantees the
delivery of signals, while the cryptography guarantees the secrecy of messages. Thus, it
is common that these two technologies are combined in watermarking applications.
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Fig. 4.3. A model of a communications channel using spread spectrum key-based coding.

4.1.4 Communication-based models of watermarking

The fundamental process in each watermarking system can be modeled as a form of com-
munication where a message is transmitted from watermark embedder to the watermark
receiver [2]. Therefore, it is natural to place watermarking into the framework of the tradi-
tional communications system. In Figures 4.4 and 4.5, two ways of mapping a watermark-
ing system into communications framework are given. Figure 4.4 shows a watermarking
system with an informed detection and Figure 4.5 a system that uses a blind detector.

In the watermarking-communications mapping, the process of watermarking is seen as
a transmission channel through with the watermark message is being sent, with the host
signal being a part of that channel. The embedding method consists of two basic steps,

Fig. 4.4. Watermarking system with informed detection-equivalent communications model.

regardless of the detection method used (informed or blind detection). In the first step,
the message to be transmitted is mapped into an added pattern,wa, of the same type and
dimension of the host signalco (two dimensional patterns for images and videos and one
dimensional patterns for audio). The mapping is usually performed using a secret wa-
termark key. The calculation of the optimal added patternwa is typically performed in
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several steps, and it starts with one or more reference patternswr0, wr1, . . . which are pre-
defined patterns, dependent on a watermark key. The reference patterns are subsequently
combined to construct a pattern that encodes the message, which is referred to as a mes-
sage pattern. The message pattern is the perceptually weighted in order obtain the added
patternwa. After that,wa is added to the host signalco, to construct the watermarked
signalcw. If the watermark embedding process does not use information about the host
signal, it is called the blind watermark embedding; otherwise the process is referred to
as an informed watermark embedding. After the added pattern is embedded, the water-
marked work is usually distorted during watermark attacks. We model the distortions
of the watermarked signal as added noise, as in the data communications model. The
types of attacks may include compression and decompression, broadcast over analogue
channels, low pass filtering, dynamic compression, etc. However, the additive noise mod-
eling is a simplified representation of the introduced distortions because all these types of
distortions are non-stationary signal-adaptive processes.

If an informed watermark detector is used, the watermark detection is performed in
two steps. In the first step, the unwatermarked host signal may be subtracted from the
received signalcwn in order to obtain a received noisy added watermark patternwn. It
is subsequently decoded by a watermark decoder, using the same watermark key used
during the embedding process. Because the addition of the host signal in the embedder
is exactly canceled by its subtraction in the detector, the only difference betweenwa and
wn is caused by the added channel noise. Therefore, the addition of the host signal can be
neglected, making watermark embedding, channel noise addition and watermark extrac-
tion equivalent to the data communications system given in Figure 4.3. In more advanced,
informed detection systems, the entire unwatermarked host signal is not needed. Instead,
some function ofco, usually a data reducing function, is used by the watermark detector
to nullify "noise" effects represented by the addition the host signal in the embedder.

In a blind watermark detector, the unwatermarked host signal is unknown, and cannot
be removed before a watermark extraction. Under these conditions, the analogy with
Figure 4.3 can be made, where the added watermark is corrupted by the combination of
impacts of the cover work and the noise signal. The received watermarked signalcwn, is
now viewed as a corrupted version of the added patternwa and the entire watermarked

Fig. 4.5. A watermarking system with blind detection-equivalent communications model.
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detector is viewed as the channel decoder.
In application that require robustness of the embedded watermark, e.g. a transaction

tracking and copy control, the likelihood that the embedded message is identical to the
extracted one, must be maximized, like in the traditional data communications systems.
However, in the authentication watermarking systems, the goal is not to communicate a
message, but to discover whether and how a host signal has been modified since water-
mark was embedded. Therefore, models from Figures 4.4 and 4.5 are not typically used
to describe authentication systems.

4.2 Communications model of spread spectrum watermarking

A general model for spread spectrum-based watermarking is shown in Figure 4.6. Vector
x is considered to be the original host signal already in an appropriate transform domain.
The vectory is the received vector, in the transform domain, after channel distortions. A
secret keyK is used by a pseudo random number generator (PRN) to produce a "chip
sequence" with zero mean and whose elements are equal to+σu or−σu. The sequence
u is then added to or subtracted from the signalx according to the variableb, whereb
assumes the values of +1 or -1 according to the bit (or bits) to be transmitted by the
watermarking process (in multiplicative algorithms multiplication operation is performed
instead addition [130]). The signals is the watermarked audio signal. A simple analysis
of SS-based watermarking, given in Chapter 2, leads to the probability of error equation
for SS-based watermarking systems:

p = Pr
{

b̂ < 0|b = 1
}

=
1
2

erfc

(√
σ2

uN

2(σ2
x + σ2

n)

)
(4.4)

where erfc(·) is complementary error function and the host audiox and the attack noise
n are modeled as uncorrelated white Gaussian random processes:xi ∼ N(0, σ2

x) and
ni ∼ N(0, σ2

n). It is clear that four parameters have an impact on the robustness of the

Fig. 4.6. A general model for spread spectrum-based watermarking system.
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watermark detection process, power of the pseudo-noise sequence, length of vectors used
for cross-correlation calculation, power of the host signal and power of the channel noise.
The detection reliability increases with an increase in length of vectorsN and the power
of the pseudo noise sequence.

However, there are design limits in enlarging the power of chip sequence and length
of correlation calculation. The increase in power of the chip sequence is limited by the
requirement of perceptual transparency posed by the HAS. As already elaborated in Chap-
ter 2, the HAS is very sensitive to the additive random noise in audio sequences, limiting
the power of the added spreading sequence to a low level noise. On the other hand, an
increase in the length of cross-correlation calculation does not have the impact on the
perceptual transparency of the watermark system, but limits the capacity of the scheme.
As N increases, more transform coefficients or samples in time domain are needed for
embedding of one watermark bit and the bit rate of the embedded watermark is propor-
tionally decreased [131, 132]. The channel noise parameter is set by an adversary that
tends to disrupt watermark transmission and prevent its detection from the watermarked
audio. The maximum value of the channel noise is limited by the requirement that the
attacked watermarked audio remains perceptually acceptable to a human listener.

The modification of each coefficient can be small enough to be imperceptible, because
correlator detector output still has a high signal to noise ratio to obtain low error detection,
because it despreads the energy present in a large number of coefficients.Direct sequence
spread spectrum systems spread the bandwidth of the information by a large factor called
a processing gainGp. The processing gain, expressed in dB, is determined by the length
of vectorsN

Gp = 10 log N. (4.5)

In order to obtain a satisfactory reconstruction of the embedded watermark in the decoder
the spread-spectrum system has to provide sufficient processing gain. The spread spec-
trum method has proven to be, besides QIM [38], one of the most efficient ways to embed
the watermark in a robust manner. The advantages of spread spectrum and quantization
index modulation methods include:

1. Watermark detection does not require the original host signal
2. It is hard to extract the watermark using statistical analysis under certain conditions
[128, 133].

However, as all block-based algorithms, spread spectrum method does not obtain a
correct watermark detection, if the extracted watermark and the original pseudo noise
sequence are not correctly aligned. The correlation calculation discussed above is reliable
only if the detection chips are aligned with those used during embedding. Therefore, a
malicious attacker can attempt to desynchronize the correlation by time- or frequency-
scale modifications. There is a methodology for adding redundancy to the watermark
chip pattern, called a redundant chip coding, so that the correlation metric is still reliable
in the presence of scale modifications [33].

The basic idea behind redundant chip coding is shown in Figure 4.7. Figure 4.7(a)
shows a perfect synchronization between a nine-chip watermark and a corresponding ex-
tracted watermark. The normalized correlation in that case totalsQ = 1. However, if the
watermark is shifted for one sample as in Figure 4.7(b), the normalized correlation equals
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Fig. 4.7. A reliable watermark extraction in the presence of scale modification attacks (Shaded
time instances depict the time of cross correlation calculation for redundant chip coding).

Q = −1/3. Thus, the detection process returns a negative decision, even though the sig-
nals are related. To prevent this type of an attack, each chip of the SS sequence is repeated
in R consecutive samples, using redundant embedding. In this case, the trade-off between
number of redundant repetitions, which decrease linearly the data rate of the embedded
watermark, and robustness against desynchronization must be made. During the detection
process, only the central sample of eachR-tuple is used for computing the correlation. In
our example in Figure 4.7(c), we useR = 3 which is sufficient to result inQ = 1.
By using such an encoding and decoding scheme, it is straightforward to prove that the
correlation is guaranteed to be correct even if a linear shift ofbR/2c samples across the
watermarking domain is induced. The issue of synchronization in spread spectrum water-
marking schemes is still an open research issue, as resynchronization algorithms can offer
only protection against a certain range of desynchronization attacks.

4.3 Spread spectrum watermarking algorithm in time domain

The basic audio watermarking algorithm that we developed is a time domain spread
spectrum algorithm. It embeds a SS-based watermark into uncompressed, raw audio by
slightly modifying the values of samples of the host audio in time domain. The procedure
uses the virtues of the spread-spectrum communications given above, as well as temporal
masking property of the HAS and the basic information about the spectrum of the host
audio (Paper I). Figure 4.8 gives a general overview of the proposed watermark embed-
ding algorithm. A simple trade-off between the watermark data rate and the robustness
of the embedded watermark is possible, because the m-sequence length is decreased, the
algorithm is able to embed a higher data rate watermark, but with less robustness against
common watermark attacks, because low pass filtering or MPEG compression. For ex-
ample, with the spreading sequence block length of 1023 samples, a watermark data rate
of 43.10 bps is obtained.
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The host audio sequence is initially analyzed in time domain, in order to determine
the just noticeable distortion threshold, using the time domain masking property of the
HAS. The goal is to place the watermark inside the host audio without causing a per-
ceptual quality degradation in the process, while maximizing the amplitude values of the
watermark sequence samples in order to increase algorithm’s robustness in the presence
of attacks. In the next step, a simple frequency analysis of the host audio is implemented
as a common zero crossings counter in the basic block interval. The counting process
derives information of the presence of the higher frequencies within the spectrum. If the
presence of high frequency content is emphasized in a block, the power of the embed-
ded watermark sequence can be greater as well, without affecting the overall subjective
quality of the watermarked audio. The embedding algorithm obtains coefficient b(n) from
the frequency analysis block, with higher values in the blocks in which the host audio
has a significant high-frequency content. At the output of the watermark embedding pro-
cess, the perceptually weighted spreading sequence is added to the host audio sequence
resulting in:

y∗(n) = x(n) + a(n)b(n)w(n) (4.6)

where a(n) and b(n) are coefficients obtained from temporal and frequency analysis blocks,
respectively, x(n) is the host audio sequence and w(n) is the watermark sequence spread
in time.

Figure 4.9 gives an overview of the watermark detection algorithm. The cornerstone of
the detection process is, as in all spread spectrum systems, a cross-correlation calculation,
in this case mean-removed cross-correlation between the watermarked audio signal and
the equalized m-sequence (Paper I). Before the watermarked signal is segmented into
blocks and cross-correlation with the m-sequence is calculated, the detection algorithm
filters it with the equalization filter. The equalization filter is a high pass filter that filters
out strong low pass components, increase correlation value and enhance detection results.
The drawback is that it is a fixed coefficient filter, not adaptive to the local properties of
the watermarked audio. The improvement of the detection robustness if adaptive filtering
is used is presented in Section 4.5. The values from the correlation calculation block are
forwarded to the detection/sampling block, which samples the output of the correlator

Fig. 4.8. A proposed watermark embedding scheme.
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in order to obtain values for the threshold/decision block. The threshold/decision block
provides the majority vote decision regarding the value of the embedded bit, depending
on the sign of the correlation value.

Fig. 4.9. A watermark detection scheme.

The correlation method, as already elaborated, demands alignment between the blocks
of the equalized m-sequence and watermarked audio blocks in order to obtain reliable wa-
termark detection. One of the malicious attacks on this scheme is the desynchronization of
the correlation calculation procedure by time-scale modifications, such as the stretching
of the audio sequence (without affecting the pitch) or the insertion/deletion of samples.
In that case, the watermark detection scheme does not properly determine the value of the
embedded watermark, resulting in a high increase of the bit error rate. A resynchroniza-
tion algorithm that is able to provide a low bit error rate during the watermark decoding
even in the presence of these attacks will be described in Section 4.4.

The algorithm obtained a high detection performance [123, 124, 125, 126] in the cases
of band equalization, all-pass filtering, amplitude compression, echo addition and noise
addition attacks (Paper I). After resampling and mp3 compression attacks, the bit error
rate is higher than in the case of other attacks (Paper I), but the detection robustness was
still equal to the other state-of-the-art algorithms. The reason for a poorer detection per-
formance in the presence of a downsampling attack is that half of the spreading sequence
power is lost after downsampling and strong low frequency components of the host audio
remain unaffected by the attack. On the other hand, mp3 compression crops the high fre-
quency spectrum of the watermarked audio and smoothes out audio waveform, destroying
small modifications introduced by the watermark embedding algorithm.

The overall watermark detection robustness of the algorithm is comparable with other
state-of-the art algorithms [72, 76], specifically in the presence of the most malicious at-
tacks for SS watermarking algorithms (mp3 compression, resampling, low pass filtering).
On the other hand, the algorithm uses computationally low demanding embedding and
detection methods and a simple perceptual model for describing two masking properties
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Fig. 4.10. The improved watermark embedding algorithm.

of the HAS. Thus, a successful compromise between the computational complexity and
the detection performance of the algorithm is obtained.

4.4 Increasing detection robustness with perceptual weighting and
redundant embedding

After the development of the basic audio watermarking algorithm for digital audio, de-
scribed in Section 4.3, we improved the performance of the given method by utilizing
more of the HAS properties and using a redundant embedding during watermark inser-
tion (Paper II).

The basic idea is that the spectrum of the m-sequence is shaped in accordance to the
HAS in order to make the watermark even more imperceptible. An integration function
is added jointly with a synchronization scheme in the receiver to obtain a higher robust-
ness against attacks. For handling time scaling attacks, a multiple chip embedding is
used. With these enhancements, a considerably lower demand for computational power is
attained, and better time-scaling resistance than with our earlier algorithm.

Figure 4.10 gives a general overview of the watermark embedding algorithm. Prior to
further processing, the m-sequence is filtered in order to adjust it to masking thresholds
of the HAS in the frequency domain (Paper II). The frequency characteristic of the filter
is the approximation of the threshold in quiet curve of the HAS. Despite the simplicity
of the shaping process of the m-sequence in frequency domain, the result is an inaudible
watermark as the largest amounts of the shaped watermark’s power are concentrated in the
frequency sub-bands with a lower HAS sensitivity. A significant number of computational
operations needed for the frequency analysis of audio, which have to be run in order to
derive global masking thresholds in a predefined time window, are skipped, making this
scheme appreciably faster. Although standard frequency analyses have more accurate
data about the audio spectrum, the simulation tests done with selected audio clips showed
a high level of similarity with the frequency masking thresholds derived from the masking
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model defined in ISO-MPEG Audio Psychoacoustic Model.
A cyclic shifted versionc(n) of the shaped sequences(n) is used to achieve a multi-bit

payload. Every possible shift is associated with a different information content and water-
mark bit rate is directly proportional to the length of the m-sequence (Paper II). Therefore,
a simple trade-off between the embedded data size and robustness of the algorithm is ob-
tained. The host audio sequence is also analyzed in the time domain, where a minimum
or a maximum is determined in the block of audio signal that has the length of 7.6 ms. As
the result of this analysis, the watermark samples are weighted by the coefficienta(n) in
order to be adjusted to psycho-acoustic perceptual thresholds in time domain.

Therefore, the watermark signal is embedded into a host audio using three time-aligned
processes. In the first stage, the m-sequence has been filtered with the shaping filter,
where a colored-noise sequences(n) is the output. Samples of thes(n) sequence are then
cyclically shifted, where the shift value is dependent of the input information payload.
At the output of the watermark embedding scheme, the shifted version ofs(n), sequence
c(n) is being weighted and added to the original audio signal:

y(n) = x(n) + a(n)c(n) (4.7)

wherex(n) denotes input audio signal anda(n) are coefficients from the temporal analy-
sis block. The addition of thec(n) sequence in the embedding process is done redundantly
in order to make the system resistant to time scaling attacks that tend to desynchronize
the extraction process.

The diagram of the audio watermark detection scheme is shown in Figure 4.11. The
detection process is again performed using the mean removed cross-correlation between
the watermarked audio signal and the equalized m-sequence. Before the start of the in-
tegration process, which determines the peak and the embedded bit, the block power
normalization part normalizes the energies of the output blocks from correlation calcula-
tions. The integration block sums the normalized output block from correlation detection
and determines the peak and its position. The detection reliability depends strongly on
the number of accumulated frames. In general, the trade-off is made between the time of
integration and the amount of hidden data.

The extraction scheme uses redundancy in the watermark chip pattern, similar to the
one described in [33]. The basic idea is to spread each chip of the shaped m-sequence
ontoR consecutive samples of watermarked audio. It has been proved that the correlation
is correctly calculated even if a linear shift ofbR/2c samples across the temporal or
frequency domain is induced. However, there is a trade-off between the robustness of the
algorithm and computational complexity, which is significantly increased by performing
multiple correlation tests.

The test results showed that if attacks are performed by mp3 and AAC compression
and time-scaling, the bit error rate is higher than in the case of other attacks, but the detec-
tion performance is still within the range of the state-of-the-art algorithms [72, 76]. The
reason for poorer extraction capabilities after mp3 and AAC coding is that these compres-
sion techniques crop high frequency spectrum of the watermarked audio, where most of
the watermark energy is situated. Time scaling is one of the most malicious attacks on
the block-based watermarking algorithms, but the redundant spread sequence embedding
solution reduced decoding BER in the presence of these attacks to an acceptable level.
The penalty for an improved watermark decoding is a decreased bit rate of the embed-
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ded watermark. However, the bit rate is still within an acceptable range for copyright
applications.

4.5 Improved watermark detection using decorrelation of the
watermarked audio

The watermarking methods presented in the two preceding sections use a matched filter
technique based on the cross-correlation of the embedded PN sequence. The matched
filter detection is optimal in the sense of SNR in the additive white Gaussian channel [2].
However, the host audio signal is generally far from the additive white Gaussian noise,
which leads us to the optimal detection problem using a pre-processing of audio by the
decorrelation of audio samples before detection. We proposed an audio decorrelation
algorithm (Paper III) for a spread-spectrum watermarking that improves the robustness of
the watermark detection and demonstrate a high resistance to attacks.

In a correlation detection scheme, used for watermark extraction process in spread-
spectrum watermarking algorithms, it is often assumed that the host audio signal is white
Gaussian process [134, 135, 136, 137]. However, real audio signals do not have white
noise properties as adjacent audio samples are highly correlated. Therefore, the presump-
tion for an optimal signal detection in the sense of signal to noise ratio is not satisfied,
especially if extraction calculations is performed in short time windows of audio signal.
Figure 4.12.a depicts a probability density function (pdf) of 5000 successive samples of
a short clip of the watermarked audio signal. It is obvious that the pdf of watermarked
audio is not smooth and has a large variance.

In order to decrease correlation between the samples of the audio signal, we use least
squares Savitzky-Golay smoothing filters (with different polynomial order and window
length), which are typically used to "smooth out" a noise signal whose frequency span is
large [138]. Rather than having their properties defined in the Fourier domain, and then
translated to the time domain, Savitzky-Golay filters derive directly from a particular for-
mulation of the data-smoothing problem in the time domain. The Savitzky-Golay filters

Fig. 4.11. An improved watermark extraction algorithm.
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Fig. 4.12. Probability density function of 5000 successive samples of a) watermarked audio
signal b) watermarked signal after whitening process.

are optimal in the sense that they minimize the least square errors in fitting a polynomial
to frames of noisy data. Equivalently, the idea is to approximate the underlying function
within a moving window by a polynomial, typically quadratic. Figure 4.12.b shows the
pdf of the 5000 consecutive samples of the residual signal after applying Savitzky-Golay
filters, with the fourth order polynomial and 21 samples long time windowing. It can
clearly be seen that the pdf of the residual signal has a more Gaussian-like distribution
and a significantly smaller variance compared to the case of the pdf of the watermarked
audio signal. We verified a Gaussian-like distribution of the residual signal using the
Bera-Jarque parametric hypothesis test of composite normality [139] and a single sample
Lilliefors hypothesis test [140]. Both tests have rejected hypothesis that watermarked au-
dio has Gaussian distribution, with a significance level of 5%. On the other hand, both
tests also showed that we cannot reject the hypothesis that the residual signal has a Gaus-
sian distribution, using the same significance level.

4.5.1 Optimal watermark detection

Pre-processed audio sequencey may have an embedded watermark

y(i) = s(i) + w(i), 0 ≤ i ≤ N − 1 (4.8)

on the other hand, it may be an unwatermarked audio sequence

y(i) = s(i), 0 ≤ i ≤ N − 1. (4.9)

The detection process verifies two hypotheses on the received content:

H0: watermarked audio content, so it is Gaussian white noise - residual signal of host
audio after decorrelation process
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H1: consists of decorrelated host audio and watermark

As decorrelation pre-processing was implemented, we can assume that the output of
decorrelation filtery for a givenw has the Gaussian distribution and the Likelihood Ratio
Test can be performed.

In addition, the watermark part of the residual signalw is a sequence of samples w(i)
with two equiprobable values, for examplew(i) ∈ {−ε, +ε} generated independently
with respect tos. Parameterε is set based on temporal analysis within one block of host
audio. As the same PN generation and perceptual shaping of the PN sequence can be done
on the receiver side, the correlation detector performs the simple correlation calculation
between the pre-processed audio and whitened watermark sequence:

C = yw = (s+ w) · w = s · w + w · w = s · w + Nε2 (4.10)

whereN is the cardinality of involved vectors, and the correlation between two vectorsa
andb is defined asa · b =

∑N−1
i=0 a(i)b(i). Since the host audio signal part of the residual

audio clips can be approximated as a Gaussian random vectors∼ N(µx, σx), σx À ε,
the normalized value of correlation can be written as:

Q =
C

Nε2
= ρ +

1
ε
N

(
0,

σx√
N

)
(4.11)

whereρ = 1 if watermark is present andρ = 0 if there is no watermark. The optimal
detection rule is to declare that watermark is embedded in the host audio if the value ofQ
exceeds a given threshold valueT . The selection of the thresholdT controls the trade-off
between a false alarm probability and the probability of detection. Using derivations from
the Central Limit Theorem, probability thatQ > T is equal to:

lim
N→∞

Pr(Q > T ) =
1
2

erfc

(
T
√

N

σx

√
2

)
(4.12)

It is clear that the decorrelation of audio sequence leads to a decrease in variance value of
signalσx (Figure 4.12), which again, according to the equations given above should lead
towards a better detection performance and smaller false alarm probability [141, 142].
The dominant factor of the detection algorithm is determined by the autocorrelation of
the whitened watermark sequences[143, 144], while the "noise" associated with audio
covert communications channel is additive white Gaussian [145, 146].

The experimental results (Paper III) showed a significantly improved detection per-
formance of the described method, compared to the standard watermark detection, if a
watermarked audio sequence is attacked with an mp3 compression and low pass filtering
attacks. The reason is that the attacked audio sequences still keep their amplitude-pdf
different from Gaussian pdf. Therefore, the correlation detection is not optimal in the
sense of Signal to Noise Ratio, because the channel can not be modeled as an additive
white Gaussian noise channel. The residual signal has in both cases properties consid-
erably more similar to AWGN and detection is accordingly more precise and stable. In
the case of the amplitude compression attack, no significant improvement (Paper III) in
detection results is achieved using a decorrelation filter, because the attacked audio al-
ready has a Gaussian-like pdf of amplitudes after an amplitude compression attack. In
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general, the decorrelation algorithm improved the performance and stability of the water-
mark detection, because similar test results were obtained in the presence of other standard
watermarking attacks, such as resampling, equalization and noise addition.

4.6 Increased detection robustness using channel coding

An equivalent model for watermarking is the process of data communications in which the
goal is to successfully transfer the watermark data using information hiding techniques.
In order to disrupt the communication stream, an attacker attempts to intentionally modify
the watermarked signal in such a way that the watermark is removed, but the marked sig-
nal remains perceptually undistorted. The communication theory can be applied in order
to find a relationship between the capacity of the watermarked channel and the distor-
tion caused by a malicious attack. This section focuses on the problem of the watermark
channel capacity, particularly on increasing the capacity of the watermark channel in the
presence of attacks (such as low pass filtering and mp3 compression) by using turbo codes.
The watermarking algorithm presented in Section 4.3 has the lowest detection reliability
in the presence of mp3 compression, low-pass filtering and time scaling. Since an effec-
tive method resistant toward time-scaling attacks was already developed (Section 4.4), we
decided to focus more on the low pass and mp3 attacks. As shown in [147], at the fixed
signal to noise ratio, channel coding is the optimal solution for the decrease of bit error
rate.

The watermark embedding scheme is the same as in Section 4.4. The watermark ex-
traction part of the algorithm starts with a pre-whitening of the watermarked signal, de-
scribed in Section 4.5. The correlator calculates a mean removed correlation between the
residual signaly∗(n) and pre-whitened PN-sequencem(n). Correlation values follow a
Gaussian distribution with a mean valueµ and standard deviationσ, which depend on the
type of music. Corresponding BER, using a hard limit decision, is therefore

BER = erfc
(µ

σ

)
= erfc(

√
SNR) (4.13)

Values for BER without any attacks introduced increase as the capacity of the watermark
channel increases. After introducing mp3 and LP attacks, BER dramatically increases.
These attacks cannot be modeled as AWGN, due to the unpredictability of SNR variations
(including complete fade) in the particular watermark channel during the watermark data
transmission.

A far more appropriate model in this case is the frequency-selective fading model
[129], because the fading model describes more precisely the distortion that appears when
certain attacks are performed. For instance, in the algorithm described in Section 4.4, the
watermark power is spread throughout the whole frequency range of audio and LP filter-
ing crops all the spectrum components outside the pass band. Similarly, mp3 compression
quantizes spectral components non-uniformly at different frequencies and it filters out the
highest frequencies in order to preserve a level of perceptual fidelity.
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4.6.1 Channel coding with turbo codes

In order to compensate for losses caused by attacks, we employ turbo codes (Paper VII)
because they have a large coding gain and good properties in the fading channels [148,
149, 150, 151, 152, 153, 154, 155]. Similar improvement in detection results would
probably be obtained if other channel codes were used. Turbo codes were chosen because
of the level of expertise and developed software implementation the second author of the
Paper VI has in the channel coding field. However, to facilitate turbo codes to produce a
coding gain, the system must satisfy a minimal SNR condition, resulting in a decreased
data rate of the watermark channel. The capacity of the watermark channel is defined as
the maximum mutual information:

C = max
p(x)

I(X; Z) = max
p(x)

[H(X)−H(X|Z)] (4.14)

where the maximum is taken over all possible distributionp(x), X is watermark data after
spreading and adjusting to the HAS properties andZ is the output from the watermark
channel. The fading model of the watermark channel is given by

Z = G ·X + N (4.15)

whereG represents a random variable that models the channel fading variation andN is an
AWGN with the varianceσ2 = N0/2. The envelope amplitude of the fading attenuation
G is a Rayleigh random variable. It is obvious that the channel capacity depends on
whether the values of the fading attenuationG are known [147]; in this case, we do not
estimate them. The penalty of not estimating channel state information (CSI) is around
0.8 dB for turbo codes that were used during the experiments (code rateR). It can be
seen that the watermark bit rate is a trade-off between code rate and BER; the coding rate
and watermark bit rate are directly proportional, while if we demand a lower BER the
watermark channel capacity decreases. Therefore, the decreasing of the code rate will
decrease the watermark data rate, but will also facilitate turbo codes to produce a lower
BER for a fixed SNR per symbol and therefore increase the watermark channel capacity.
This theoretical background gave us a solid foundation that introducing of turbo codes
will reduce BER for a given watermark capacity in comparison with a regular detection
or equivalently increase available watermark bit rate for a given BER.

The watermark bits are encoded before they are embedded into the host audio and
iteratively decoded (Paper VII) using the soft output values from the correlator during
the watermark extraction process. The watermark bits are divided in frames of 400 bits
and encoded using multiple parallel-concatenated convolutional code. Interleaving inside
frame was random and five decoding iterations of soft output values were performed in
the turbo decoder. Each recursive systematic code was an optimum (5,7) code, giving
a punctured code rate ofR = 1/2. The frame length and code rate were chosen as a
compromise between low computational complexity requirements of the watermarking
algorithm and the demand for long iterations during turbo decoding process.

Test results showed (Paper VII) that turbo coding maintains a reliable watermark bit
rate for a fixed BER, even after severe MPEG compression and filtering attacks. The
watermark bit rate at fixed BER=10−6 is in the range of a few tens of bps (enough for
the digital copyright applications), which was not attainable by the standard, uncoded
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watermarking system. As expected [147], the uncoded system still slightly outperforms
the one with turbo codec at low SNR per symbol values. Therefore, the introduction
of the described turbo codec is justified only when the SNR per symbol value is high
enough (spreading factor is large) and iterative decoding of soft output values is able to
make the coding gain. One practical implementation issue could be the harsh slope of the
watermark bit rate vs. BER curve (Paper VII), as a small change in the demanded bit rate
causes a large BER variation. It can be simply solved by posing an upper limit for the
BER value that will guarantee a certain range for the watermark bit rate.

4.7 Summary

Chapter 4 focused on the spread spectrum algorithms for digital watermarking and treats
the second subproblem of the thesis. The subproblem was defined by the following ques-
tion: How can the detection performance of a watermarking system be improved using
algorithms based on communications models for that system? A general model for the
spread spectrum-based watermarking is described as well, in order to place in context the
developed algorithms.

A spread spectrum audio watermarking algorithm in time domain is presented. The
overall watermark detection robustness of the algorithm is comparable with other state-of-
the art algorithms, specifically in the presence of mp3 compression, resampling and low
pass filtering. On the other hand, the algorithm uses computationally low demanding em-
bedding and detection methods and a simple perceptual model for describing two masking
properties of the HAS. One of the malicious attacks on this scheme is the desynchroniza-
tion of the correlation calculation by time-scale modifications, such as the stretching of
the audio sequence or insertion/deletion of samples. In that case, the watermark detection
scheme does not properly determine the value of the embedded watermark, resulting in a
high increase of the bit error rate.

A resynchronization algorithm that is able to provide a correct watermark detection
even in the presence of these attacks, while maintaining a perceptual transparency by a
perceptual noise shaping is presented subsequently. The consequence of the improved
watermark decoding is a decreased bit rate of the embedded watermark; however the bit
rate is still within an acceptable range for most copyright applications.

The possibility of improving the robustness of watermark detection and increasing the
resistance to attacks was studied. An audio decorrelation algorithm for a spread-spectrum
watermarking that uses least squares Savitzky-Golay smoothing filters is proposed. The
test results showed a significant improvement in the detection performance of the de-
scribed method, compared to the standard watermark detection, especially if the water-
marked audio sequence is attacked with mp3 compression or low pass filtering attacks.

In order to further improve detection robustness and decrease bit error rate, the channel
coding was employed, because it has property to reduce BER for a given watermark bit
rate in comparison with a regular detection or equivalently increase an available water-
mark bit rate for a given BER. The simulations showed that the channel coding maintains
a reliable watermark bit rate for a fixed BER, even after severe attacks. However, the
introduction of the described turbo channel coding is justified only when the SNR value
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is positive and the iterative decoding of soft output values is able to make the coding gain.
One of the implementation issues was the harsh slope of the watermark bit rate vs. BER
curve and the sensitivity to the cut attack, because the whole block of bits is needed during
decoding.



5 Increasing robustness of embedded watermarks using
attack characterization

As mentioned in Chapter 2, the main requirement of many watermark applications is the
ability of the watermark detector to detect watermarks even if the watermarked audio has
been significantly distorted after embedding. The watermarks embedded in such manner
that they endure the legitimate and everyday usage of watermarked content are referred to
as robust watermarks [2].

Recently, the watermark literature defined different types of robust watermarks. While
the robust watermarks are designed to survive usual signal processing modifications, se-
cure watermarks are designed to resist any attempt by an attacker to prevent their intended
purpose [156, 157, 158, 159, 160]. As in most applications, the watermark system can-
not perform its function if the embedded watermark cannot be detected, robustness is a
necessary property if a watermark is to be secure. Therefore, if a watermark can be re-
moved by an application of normal process it cannot be labeled as secure. On the other
hand, robustness is not a sufficient condition for security, because secure watermarks must
also survive processes that are specially designed to remove them. Thus, the design of a
secure watermark system must take into consideration the range of all possible attacks,
while the design of a robust watermark system can limit its focus to the range of probable
processing.

Generally, there are several methods for increasing watermark robustness in the pres-
ence of signal modifications. Some of these methods aim to make watermarks robust to all
possible distortions that preserve the perceptual quality of the watermarked signal. Others
include strategies for enduring specific types of distortions. Some of the most frequent
methods [2] for increasing robustness are:

1. Redundant embedding - watermark is redundantly embedded in several coefficients
2. Spread spectrum - redundant embedding strategy in frequency domain, already used in
the design of robust audio watermarking systems described in Chapter 4.
3. Embedding in perceptually significant coefficients - modification of these coefficients
to remove the watermark causes significant perceptual distortions of the watermarked me-
dia
4. Embedding into coefficients of known robustness - the modification is simulated at
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the embedding side and the coefficients most resistant to it are selected for embedding
process
5. Inverting distortions at the detector - during the detection process, the detector attempts
to invert any processing that has been applied since the watermark was embedded
6. Pre-inverting distortions in the embedder - when there is a small set of distortions that
watermark must survive, watermark is pre-distorted in order to be correctly detected.

In implemented watermarking systems, strategies for handling various types of distor-
tions are usually combined. For example, image watermarking systems commonly use
redundant embedding to handle cropping and noise addition, but use inversion in the de-
tector to handle geometric distortions.

5.1 Embedding in coefficients of known robustness - attack
characterization

When the watermark embedding is done in perceptually significant coefficients, the aim
is to design a watermark that would survive all the possible attack that preserve a consid-
erable level of perceptual quality of the attacked audio. However, in many applications
the main focus is a specific set of attacks that might occur between the watermark embed-
ding and detection. In such cases, the optimal approach is to deal with the specific attacks
directly.

The first step is to find a domain of signal that is likely to be robust against the attacks
of interest. For example, if we are more concerned with having an audio watermark sur-
vive temporal shifting than we are having it survive linear filtering, we might choose to
embed in the FFT domain, because time domain shifting does not influence signal’s spec-
trum. After the suitable domain for embedding has been selected, the coefficients that
best survive the expected distortions are identified. The distortions that can be defined
analytically allow the analytical derivation of the coefficients, for other distortions, it has
to be done empirically. The experiments are generally straightforward and involve com-
paring the content directly after embedding and directly before detection. By comparing
corresponding coefficients, we can find out how the channel between the embedder and
the detector affects each coefficient. Such experiments need to be performed over a large
number of samples, and numerous trials are often needed in order to get a suitable model
with a sufficient statistical reliability.

However, a particular coefficient might be differently distorted in different host signals,
like in the presence of adaptive compression. Adaptive compression algorithms, like mp3
compression, examine the signal to be compressed and set the amount of quantization
applied to each coefficient. As a consequence, a particular coefficient can be heavily
quantized in one audio signal, while almost unchanged in the other audio signal. This
suggests that a watermark should be embedded adaptively.

One technique for determining the set of coefficients for individual host signal is to
measure the relative robustness of each coefficient just prior to embedding a watermark.
This is usually done by applying several simulated distortions to the host audio and mea-
suring their effect on the coefficients of that work in the chosen domain. The watermark is
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then embedded into the coefficients determined to be the most robust ones, which might
be a different set of coefficients for each host signal. The subset of coefficients used for
watermark embedding is forwarded to the detector along with the watermarked audio,
which may be distorted. It is obvious that in this scenario an informed is required in order
to extract watermark bits.

5.2 Attack characterization for spread spectrum watermarking

The primary goal of the introduction of the attack characterization into our audio water-
marking algorithms was the poorer detection performance of the developed algorithms
in the presence of mp3 compression, low pass filtering and resampling. The devel-
oped schemes had lower detection in the presence of time scaling (correlation desyn-
chronization) attacks as well (Chapter 4), but a few algorithms have already been pub-
lished [33, 78] that coped well with these watermark detection threats. Therefore, the
main scope was the development of an attack characterization section in the embedding
algorithm that would significantly improve detection results in the presence of frequency
cropping attacks such as mp3 compression and low pass filtering. In addition, the design
of an informed detector is needed in order to use data forwarded from the embedding side.

In spread spectrum watermarking, the embedded signal is a modulated low variance
pseudo-random Gaussian white noise sequence. It is detected by cross-correlating the
known watermark sequence with either the extracted watermark or the watermarked sig-
nal itself (informed or blind detection). If the correlation value is above a given threshold,
then the watermark is detected. As elaborated in Chapter 2 and Chapter 4, the proper-
ties of the spread spectrum signalling makes it attractive for application in watermarking
since a low-per-chip-energy, and hence imperceptible, watermark, robust to a narrowband
interference, can simply be embedded and extracted.

However, the spread spectrum approaches have a number of limitations. For example,
if the energy of the watermark is reduced due to fading-like distortions on the watermark,
any residual correlation between the host signal and watermark can result in an unreliable
detection. In addition, they neither take into account temporal nonstationarity of the host
audio signal and attack interference nor include adaptive techniques to estimate the sta-
tistical variations. Furthermore, the correlator receiver structures used for the watermark
detection are not effective in the presence of fading. Although spread spectrum systems
in general try to exploit spreading to average the fading, the techniques are not designed
to maximize performance. Many common multimedia signal distortions, including crop-
ping, filtering, and perceptual coding, are not accurately modeled as narrowband inter-
ference. It has been proved [161, 162] that such signal modifications are fading-like on
the watermark if embedded in an appropriate domain. The application of communication
diversity and channel estimation techniques, which are effective in fading environment, is
needed to obtain the robustness of watermarking schemes.

One of the earliest methods of attack characterization consisted of diversity and chan-
nel estimation [129]. Diversity is employed through watermark repetition and channel
estimation through a reference watermark. Although it is well known that the repeti-
tion can improve the reliability of robust data hiding schemes, it is traditionally used to
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decrease the effect of fading. If properly designed, a repetition can often significantly
improve performance and may be worth the apparent sacrifice in the watermark bit rate.
If the repetition is viewed as the application of communication diversity principles, it can
be shown that a proper selection of an appropriate watermark embedding domain with an
attack characterization can notably improve reliability.

5.2.1 Novel principles important for attack characterization
implementation

There are three general principles used for the design of watermarking algorithms with an
attack characterization [129], listed as follows.

1. Modeling of interference as fading
The previous analytic work in the area of robust digital watermarking has assumed addi-
tive Gaussian watermark channels. The effect of distortions on the overall watermarked
signal and embedded watermark is considered to be in the form of stationary additive
Gaussian noise. Intuitively, however, it is clear that some degradations such as cropping
or heavy linear filtering have the effect of completely destroying the watermark content
in the associated components of the signal. For example, if the watermark is embedded
in the spectral domain of an audio signal, resampling the audio to a quarter of its original
sampling frequency will destroy the watermark signal components in the discarded region
of the signal while leaving others unchanged. Similarly, if the watermark is placed in the
discrete Fourier transform components of the signal, a harsh low pass filtering will remove
the existence of the watermark from high-frequency coefficients. Therefore, some very
simple distortions have a nonuniform effect on the embedded watermark. That is, some
watermark components are more severely distorted than others.

Fadingis a term used to describe the effect of a communication channel that attenuates
the information-bearing signal amplitude in an unpredictable way. Traditional character-
istics of a general fading processing include:
• Varying SNR, including an SNR representing a complete fade of the watermark signal
• Unpredictability of SNR variations in the watermark channel before watermark trans-
mission
• Independence of watermark signal attenuation in signal coefficients distant in frequency,
time or another signal domain

2. Implementation of diversity
A general way to improve reliability in an unknown, nonstationary environment suscep-
tible to deep fades is to employ diversity. A communication channel can be broken into
independent subchannels, where each subchannel has a certain capacity. Since, in a fad-
ing environment, some of these channels may have a capacity of zero in a particular time
instant, diversity principles are employed. Specifically, the same information is transmit-
ted through each subchannel with the hope that at least one repetition will successfully be
transmitted. For watermarking, it is referred to ascoefficient diversitybecause different
coefficients within the host signal are modulated with the same information. The sacrifice
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in employing diversity is the bandwidth expense since the same information is sent using
multiple coefficients.

3. Watermark channel estimation
In channel estimation, a training or reference sequence is employed to adjust the receiver
filter to maximize the detection reliability. Watermarking methods that do not attempt to
depict the attacks fail to exploit the advantage of extraction after any signal modification
and, hence, fundamentally operate in a nonoptimal manner.The evaluation and demon-
stration of the performance improvements if watermark characterization is done prior to
extraction is given in [129]. The analysis shown in [129] tries to find answers to two basic
questions that are arisen when incorporating coefficient diversity and channel estimation:
• How to combine the different extracted repetitions of the watermark to maximize the
overall reliability of the system?
• How to define sub-channels within the host signal to inherently promote robustness
[162, 163, 164]?
The diversity and channel estimation should be incorporated into a general watermarking
framework, e.g., through the use of a watermark repetition and attack characterization,
respectively. Many proposed watermarking algorithms are encompassed by this class of
techniques or can be easily modified to fit this category.

5.3 Watermark channel modeling using Rayleigh fading channel
model

The first step in the development of the mp3 attack characterization is the estimation
of channel distortions caused by mp3 compression. The analysis of the mp3 compression
attack on the watermark channel (Paper VIII) was performed using a previously developed
audio watermarking scheme, given in Paper II. Watermark is spread over a large number
of samples in time domain and perceptual distortion is kept below the just noticeable
difference level by using the occurrence of temporal masking effect of the human auditory
system.

A pseudo random number generator is used to produce a "chip sequence"u with a zero
mean and whose elements are equal toσu or−σu. We assume that one bit of information
is embedded in a vectory of N samples in time domain, obtaining the watermark bit rate
of 1/N bits/sample. A watermark bit is represented by the variable b, whose value is either
-1 or +1. The watermark embedding is described by:

y = x + bu (5.1)

We assume a simple statistical model for the unwatermarked audio signalx - uncorrelated
white Gaussian random process with a zero mean and varianceσ2

x. If there are no attacks,
the normalized sufficient statistic at the detector follows a Gaussian distribution with a
mean valueµr and standard deviationσr, which depend on the type of music. In the case
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when b=1 and a hard limit decision is used, the bit error rate (BER) p is given by:
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whereerfc stands for the complementary error function. The same error probability is
obtained if we assume that b=-1. The bit error probability, in the absence of attacks,
increases as the bit rate of the watermark channel increases (smaller spreading N factor is
used). If a watermark removal attack is introduced, watermarked signal at the detection
is:

y = x + bu + n (5.3)

wheren is the noise caused by introduced attack. The BER in this case is given as:
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In the previous work in the field of watermarking, the noise introduced by attacks was
usually modeled as Additive White Gaussian Noise (AWGN). The frequency analysis of
the watermarked signal showed unpredictability of noise variations (including complete
fade) in the particular frequency sub bands in the presence of mp3 coding. For instance,
in the tested algorithm, the watermark power is spread throughout the whole frequency
range of audio (Paper VIII). Imposed mp3 compression quantizes spectral components
non-uniformly at different frequencies and filters out the highest frequencies in order to
preserve a level of perceptual fidelity. In addition, it has been proved [147] that correla-
tor receiver schemes are not very effective in the presence of a fading-like interference.
Therefore, a far more appropriate model for the watermark channel in the presence of
mp3 coding should be the frequency-selective fading model because it describes more
precisely the distortions that appear when mp3 attacks are introduced. We assumed the
Rayleigh frequency-selective fading channel model and that receiver does not have chan-
nel state information (CSI). The Rayleigh fading channel model was adopted as it is one
of the simplest fading models. Therefore, if this model describes the attack distortions
better than the standard model, it can be expected that more complex models would per-
form even better. Theoretical bit error rate for the Rayleigh fading channel is given by
[147]:

p =
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In order to practically check the hypothesis, we compared the expected theoretical figures
for BER derived from equations 5.4 and 5.5 with the BER curves obtained from experi-
ments (Paper VIII). The experimental values of BER were obtained using a large set of
watermarked songs from different music styles. The watermarked sequences have then
been attacked using mp3 compression.

Our experiments suggest (Paper VIII) that the noise introduced by mp3 compression
can hardly be modeled as AWGN, as BER curves differ as much as one order of magnitude
for some values of the spreading factor N. The BER curves obtained by the Rayleigh
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fading channel model have steepness and values more close to the experimentally derived
ones. The results confirmed that a far better watermark channel modeling is obtained by
the proposed model than with the usual AWGN watermark channel model.

5.4 Audio watermarking algorithm with attack characterization

Using the theoretical background from Section 5.1 and Section 5.2, we developed a novel
audio watermarking scheme that uses an attack characterization to obtain high robustness
against standard watermark attacks (Paper VI). The watermark embedding and detection
are based on the frequency hopping spread spectrum method in the spectral domain.

The watermark embedding scheme is given in the Figure 5.1. Samples of the host au-
dio sequence are forwarded to the SYNC module (Figure 5.1). In the SYNC module, the
host audio is divided into blocks used for data hiding and blocks used for the watermark
extraction synchronization. The data hiding blocks have a fixed length L, while synchro-
nization blocks have a length chosen randomly from the interval[L1, L2]. Thus, between
each two consecutive data hiding blocks, there is one synchronization frame with variable
length. In each synchronization frame, a perceptually shaped PN sequence is added to
the host signal in time domain. The spreading gain of the embedded PN sequence is con-
trolled through the limits of the synchronization block lengthL1 andL2. The data hiding

Fig. 5.1. A watermark embedding scheme.

block is forwarded to the attack characterization section of the embedding scheme (Paper
VI). Each data-hiding block undergoes mp3 compression and LP filtering and distortion
measureD, for the ratio of the original magnitude of an FFT coefficient and magnitude of
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Fig. 5.2. Watermark extraction method.

the same FFT coefficient after modifications, is calculated during predefined time interval
T . The algorithm selects a sub band corresponding to 100 consecutive FFT coefficients
(of 1024 coefficients in total) with the least distorted magnitudes. At the embedding mod-
ule, the binary coded identity of the position of the first coefficient is inserted along with
watermark bits into single bit stream and embedded into data hiding blocks with aN -fold
repetition during time intervalT . The time intervalT is chosen as a trade-off between
two conflicting requirements. The first requirement is to get precise information about the
distortion of FFT coefficients at a particular time instant, and the second one is decreasing
the portion of the position identity bits in the unified data stream.

Data embedding is performed by a frequency hopping method. A secret key is used to
select two FFT coefficients from the sub band least affected by modeled attacks. The mean
value of the magnitudes of all the coefficients in the sub band is calculated and assigned
to the two mapped coefficients’ magnitudes. The magnitude of the coefficient at the lower
frequency is then increased byK decibels (dB) and the value of the second coefficient
is decreased by the same value, if bit 1 is to be embedded. The opposite arrangement is
done if bit 0 is signalled. The valueK is chosen to be equal to distance from the mean
value of the magnitudes of the sub band to the frequency masking threshold, derived
from the frequency masking property of the HAS. After the additional data bit has been
embedded, the block is transformed back to the time domain and inserted between two
synchronization frames.

At the start of the watermark extraction processes (Figure 5.2), samples of the water-
marked audio are checked for synchronization. Mean removed cross-correlation, between
synchronization block and the same prefiltered PN sequence as the one used during wa-
termark embedding, is calculated. If a time shift is noticed, the following data hiding
block is shifted for the same number of samples, after which the extraction process from
the data hiding block begins. Using the same hopping key-based pattern as on the embed-
ding side, the detector reads the magnitude (in dB) of the first FFT coefficient (valueA);
the same operation is repeated for the FFT coefficient on the higher frequency, obtaining
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valueB. The detection valueV is calculated as the difference between valuesA andB.
The sign ofV determines the value of the extracted bit; a positive value is mapped to bit
1, otherwise bit 0 is extracted. After the time intervalT , a new sub band is selected using
the extracted information about the position of the first coefficient of the sub band.

The detection performance of the algorithm (Paper VI) was tested against the standard
audio watermarking attacks. The algorithm showed a high performance in the presence of
the amplitude compression, resampling and mp3 compression. Although the bit error rate
(BER) was slightly higher with an echo addition and time scaling, it was still within the
range obtained by other state-of-the-art algorithms. The detection results were compared
with the results obtained using the same scheme without an attack characterization section
(Paper VI). The results indicate that an attack characterization significantly improves the
detection performance of the algorithm, decreasing the bit error rate 4 to 20 times in the
case of LP filtering or mp3 compression attacks (Paper VI).

5.5 Improved attack characterization procedure

As noted in Section 5.4, all the contemporary SS audio watermarking algorithms have sig-
nificantly decreased the detection reliability in the presence of low pass (LP) filtering and
MPEG compression. These two attacks cannot be modeled as Additive White Gaussian
Noise (AWGN) due to the unpredictability of SNR variation in the particular watermark
channel during watermark data transmission. If the watermark power is spread throughout
the whole frequency range of audio and LP filtering is introduced, watermark components
outside pass band are significantly distorted. Similarly, MPEG compression quantizes
spectral components non-uniformly at different frequencies; in addition, it filters out the
highest frequencies in order to preserve a level of perceptual fidelity. Therefore, an im-
proved technique must include a characterization of fading-like distortions of coefficients
where the watermark is to be embedded and concentration of watermark energy in regions
that are less distorted (Paper IX).

We developed a novel scheme that has a significantly higher detection robustness com-
pared to the standard SS watermarking algorithm that uses direct sequence (DS) approach
(Paper IX). Using the frequency hopping (FH) method [165], the good properties of the
SS methods remain intact. In addition, there is no calculation of cross-correlation between
the embedded SS sequence and host audio as in the standard SS algorithms, as the corre-
lation calculation is replaced by a modified patchwork algorithm [122] at the extraction
side. The watermark embedding scheme is similar to the one described in Paper VI, with
two novel features. The scheme described in Paper VI used both MPEG compression and
LP filtering attack characterization in order to find the subset of FFT coefficients least
affected by these fading-like distortions. However, the experimental tests showed that the
characterization section selects similar subsets of FFT coefficients (Paper IX) even if we
leave out the LP filtering module, as the MPEG compression has an inherently embedded
LP filter.

Therefore, for the reason of the decreased computational complexity of the embedding
algorithm, only MPEG compression is simulated at the characterization section. The
distortion measureD for the ratio of the original magnitude of an FFT coefficient Ci and
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magnitude of the same FFT coefficient after the simulated attack C∗
i , is calculated during

a predefined time intervalT :

D =
N∑

i=1

aiDi, Di =
(Ci − C∗i )2

C2
i

(5.6)

and ai = log(i+1)
i for i = 1, . . . , N . Coefficientsai are introduced because the ex-

periments showed that the modification of the FFT magnitudes at the lower frequencies
introduces more perceptual distortion, as they contain more signal energy. Theai ex-
pression is derived from experimental data. Other models for weighting coefficients have
been tested, with similar results; however, the experiments are done using the expression
above. Subsequently, weightsai improve the perceptual transparency of the algorithm,
allowing less distortion in the frequency subbands of the higher sensitivity of the HAS.

The watermarking extraction scheme is identical to the one in Paper VI. If a time scal-
ing attack is performed, the correlation peak is decreased for a random value, depending
on the place where the samples of the watermarked audio were deleted or additional sam-
ples inserted. However, the parameters of the synchronization block enable a reliable
detection of the correct position of the data hiding block, if the scaling factor is in range
[−3%, +3%]. A further increase or decrease of the length in the watermarked audio sig-
nificantly decreases the performance of the watermarking extraction scheme.

In order to make comparison with DS spread spectrum watermarking algorithms, we
used one of the standard DS algorithms in FFT domain [76], with an embedding and
extracting scheme given in Figure 5.3 and 5.4, respectively. The parameters of the DS
algorithm were selected in such a way that the watermark bit rate is equal to the bit rate
of our algorithm. The forwarding of the selected subset information to the watermark
detector is done using the same method as in our algorithm.

The robustness of the algorithms was tested against the standard audio watermarking
attacks listed in Paper VI. The results in the case of no attack characterization used at
the watermark embedding scheme were obtained as a reference value as well. The experi-
mental results proved a significant advantage in the detection robustness that the proposed
algorithm has (Paper IX), compared to the DS spread spectrum algorithm, with a BER
generally 4-10 times lower. In addition, it is clear that the introduction of the attack char-
acterization module additionally improved the extraction reliability of both algorithms,
decreasing the bit error rate, most discernibly in the presence of MPEG compression, low
pass filtering and resampling attacks. Therefore, the algorithm obtained a high detection
robustness, while decreasing the computational complexity and increasing the perceptual
transparency of the watermarked signal.

5.6 Attack characterization section in an improved spread spectrum
scheme

In [39] the authors describe the importance of decreasing the influence of the host signal
on the watermark extraction process, analyzing a spread spectrum system with the fixed
cross correlation value. The analysis of the watermark detection performance clearly
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Fig. 5.3. A direct sequence watermark embedding scheme.

Fig. 5.4. A direct sequence watermark extraction scheme.

shows an improved detection robustness, in comparison with the case of an uninformed
watermark embedding, where the host signal itself is considered as a source of interfer-
ence in the watermark channel. However, in [39] there is no detailed description of the
practical issues concerning the watermark embedding process, e.g. the control of the
perceptual quality of the signal when a fixed cross-correlation is forced.

Using the framework from [39], in [90] authors derived three different watermarking
approaches, corresponding to the cases of "maximized robustness", "maximized correla-
tion coefficient" and "constant robustness". Still, the problem of minimizing the bit error
rate, at a fixed average distortion level during the watermark embedding process, is not
addressed. Recently, an improved spread spectrum (ISS) method has been proposed [91]
that removes the host signal as a source of interference, gaining significantly on the ro-
bustness of watermark detection. The improvement obtained using ISS over standard SS
method is in the range of gains if the quantization index modulation (QIM) is compared to
the standard SS methods. The ISS method does not suffer from the same sensitivity to am-
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plitude scaling as the QIM method, because ISS is insensitive to the amplitude scaling as
the SS method. However, the ISS method cannot keep the distortion caused by watermark
embedding at a constant level as in the SS method. Although it delivers the same average
distortion as in the SS method, a forced cross-correlation minimization may cause a large
local distortion of the host signal, which is an unacceptable property for most of audio
watermarking applications. In addition, all the results presented in [91] are theoretically
derived, without a subjective test and measuring the bit error rate in the presence of the
attacks other than AWGN.

Fig. 5.5. ISS watermark embedding algorithm

We proposed a novel robust audio watermarking algorithm in time domain that uses the
perceptually tuned ISS method and attack characterization at the embedding side (Paper
X). The overall scheme of the watermark embedding algorithm is given in Figure 5.7. The
samples of the host audio sequence are forwarded simultaneously to the masking analysis
module and attack characterization module. The masking threshold in time domain is
derived for every input block of host audio. The length of the frame and power level of
watermark are chosen in line with the requirements of the HAS regarding inaudibility and
to give the watermark highest possible amplitude before it is added to the host signal.

The attack characterization section has the purpose of the analysis of the signal for the
watermark removal attacks including mp3 compression and LP filtering. In order to find
the level of the introduced noise by these distortions, these spectrum modifications are
simulated at the embedding side, where each data hiding block undergoes mp3 compres-
sion and LP filtering (Paper X). A distortion measure SNR is defined as:

SNR= 10 · log10

∑
n x2(n)∑

n[x(n)− z(n)]2
[dB] (5.7)

is calculated for the blocks of host audio with a predefined lengthN and forwarded to the
watermark embedding block.x(n) stands for the original host audio samples andz(n)
are the samples of audio after the given modification.
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The watermark bits are perceptually tuned using weight coefficients form the HAS time
domain masking analysis and embedded into the host audio sequence using ISS modu-
lation. The power of the watermark sequence in a block with lengthN , after spreading
and perceptual tuning, isσ2

u. We used the linear version of the ISS method, because it is
the simplest to analyze, but still provides a significant part of the gains in relation to the
traditional SS method. In this case, the host audio is watermarked according to:

s = x + (αb− λx)u (5.8)

wherex stands for the original host signal vector,s stands for watermarked audio vector
and u holds for the PN sequence after the perceptual adaptation process. A weighted
PN sequence is added or subtracted from the signalx according to variableb, whereb
can be either +1 or -1, according to the watermark bit embedded into the host audio.
Parametersα andλ control the distortion level and removal of the host signal influence
on the detection statistic, respectively. Using the framework given in Section 2.3.5, it is
possible to derive optimal values forλ andα:
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The watermark embedding scheme uses equation 5.9 forλopt for the adjustment of the
desired properties and the overall performance of the watermarking system. The attack
characterization module can include several sections that would simulate expected attacks
that appear in the transmission channel. The test results are obtained using the attack char-
acterization module that consisted of mp3 and low pass filtering characterization sections,
because they caused the largest bit error rate on the original SS watermarking system
(Paper II), as well as on other contemporary audio watermarking methods. The masking
analysis module computes the highest allowed valueσ2

u for under the constraints of time
domain masking of the HAS. The estimate of the signal-to noise ratio in the watermark
channel from the attack characterization block is forwarded to the embedding module.

Using the attack characterization, even by a simple parameter as SNR, we were able
to implement a watermarking system that is able to make a trade-off between good statis-
tical properties of ISS modulation and requirement for a robust watermark detection. As
we aim to improve an algorithm using a blind watermark detection (without access to the
original host audio sequence), it is a convenient way to estimate the channel noisen with-
out the knowledge of the statistical model of the noise. For a desired watermark bit rate,
determined by variableN , λopt is calculated and the variable a derived from the equation
5.9. Therefore, using the attack characterization block we can derive upper bounds for
a system’s performance under a particular watermark removal attack and determine the
upper bound for the capacity of the watermark channel for a given bit error rate. On the
other hand, it is possible to design a system with a predefined upper bound for the bit error
rate and deriveλopt and variable watermark capacity determined by block lengthN .

The developed audio watermarking algorithm has been tested using a large set of songs
(Paper X). Both mp3 and low pass filtering attacks have dramatically increased the detec-
tion bit error rate, due to the unpredictability of SNR variations, including a complete fade
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of the particular frequency subbands, during the watermark data transmission. It is clear
that the detection performance of the system using the attack characterization and ISS
modulation is significantly higher compared to the method using the standard SS modula-
tion. At lower watermark capacities gains are equal to a few orders of magnitudes in the
detection bit error rate (Paper X). However, the bit error rate of the described system was,
as expected, still larger than in the case of the ISS modulation system with the non-blind
detection. The experimental results have confirmed the algorithm’s property to take ad-
vantage of the statistical properties of ISS modulation while maintaining a blind detection
during the watermark extraction process.

5.7 Summary

The third research subproblem was identified using the following question: How can an
overall robustness to the attacks of a watermark system be increased using an attack char-
acterization at the embedding side? Chapter 5 concentrated on increasing the robustness
of the embedded watermarks using the attack characterization. Novel principles impor-
tant for our attack characterization implementation are presented, as well as the watermark
channel models of interest.

A particular watermark channel model that was studied was a watermark channel
model in the presence of the MPEG compression. We showed that a far more appro-
priate model for the watermark channel in the presence of mp3 coding is the Rayleigh
frequency-selective fading model, because it describes more precisely the distortions that
appear. The experimental results suggest that the noise introduced by mp3 compression
can hardly be modeled as AWGN and that the BER curves obtained by the Rayleigh fad-
ing channel model have steepness and values more close to the experimentally derived
ones. The results confirmed that a far better watermark channel modeling is obtained by
the proposed model than with the usual AWGN watermark channel model.

Using the available theoretical background, we developed a novel audio watermarking
scheme that uses the attack characterization in order to obtain a high robustness against
standard watermark attacks. The watermark embedding and detection are based on the
frequency hopping spread spectrum method in the spectral domain. The experimental
results proved a significant advantage in the detection robustness that the proposed al-
gorithm has, in comparison with the direct sequence spread spectrum algorithm, with a
significantly lower BER. In addition, it is clear that the introduction of the attack char-
acterization module additionally improved the extraction reliability of both algorithms,
reducing the bit error rate, most discernibly in the presence of MPEG compression and
low pass filtering. The overall algorithm obtained a high detection robustness, while de-
creasing the computational complexity and increasing the perceptual transparency of the
watermarked signal.

At the end, it was shown that the attack characterization algorithm that was proposed
can be successfully used in other schemes as well. The detection performance of the
system using the attack characterization and the ISS modulation is significantly higher
compared to the method using the standard SS modulation, uses the statistical properties
of ISS modulation while maintaining a blind detection during the watermark extraction.
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Robust digital audio watermarking algorithms and high capacity steganography methods
for audio are studied in this thesis. The main results of this work are the development
of novel audio watermarking algorithms, with the state-of-the-art performance and an
acceptable increase in the computational complexity. The algorithms’ performance is val-
idated in the presence of the standard watermarking attacks. The main point of the "magic
triangle" concept is that if the perceptual transparency parameter is fixed, the design of a
watermark system cannot obtain a high robustness and watermark data rate at the same
time. Therefore, the research problem was divided into three specific subproblems.

Chapter 2 gives an extensive literature review and describes in detail different concepts
of watermarking of digital audio. The scientific publications included into the literature
survey have been chosen in order to build a sufficient background that would help out in
solving the research problems.

The first research subproblem was characterized by the following question: What is
the highest watermark bit rate obtainable, under perceptual transparency constraint, and
how to approach the limit? The general background and requirements for high bit rate
covert communications for audio were given in Chapter 3.

The details and experimental results for the modified time domain LSB steganography
algorithm were discussed. The results of subjective tests showed that the perceptual qual-
ity of watermarked audio, when embedding is done by the proposed algorithm, is higher
in comparison with the standard LSB embedding. The tests confirmed that the described
algorithm succeeds in increasing the bit rate of the hidden data for one third without af-
fecting the perceptual transparency of the resulting audio signal. However, the simple
LSB coding method in time domain is able to inaudibly embed only 3-4 bits per sample,
which is far from a theoretically achievable rate, mostly due to a poor shaping of the noise
introduced by embedding and operation in time domain. Therefore, a perceptual entropy
and information theoretic assessment of the achievable data rates of a data hiding channel
was necessary to develop a scheme that could obtain higher data rates.

A high bit rate algorithm in wavelet domain was developed based on these findings.
The wavelet domain was chosen for data hiding due to its low processing noise and suit-
ability for frequency analysis, because of its multiresolutional properties that provide ac-
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cess both to the most significant parts and details of signal’s spectrum. The experiments
showed that the wavelet information hiding scheme has a large advantage over the time
domain LSB algorithm. The wavelet domain algorithm produces stego objects perceptu-
ally hardly discriminated from the original audio clip even when 8 LSBs of coefficients
are modified, providing up to 5 bits per sample higher data rate in comparison with the
time domain LSB algorithm.

The second subproblem was defined by the following question: How can the detection
performance of a watermarking system be improved using algorithms based on communi-
cations models for that system? In Chapter 4, a general model for a spread spectrum-based
watermarking is described as well, in order to place in context the developed algorithms.

A spread spectrum audio watermarking algorithm in time domain is presented. The
overall watermark detection robustness of the algorithm is comparable to other state-of-
the art algorithms, specifically in the presence of mp3 compression, resampling and low
pass filtering. On the other hand, the algorithm uses computationally low demanding em-
bedding and detection methods and a simple perceptual model for describing two masking
properties of the HAS. One of the malicious attacks on this scheme is the desynchroniza-
tion of the correlation calculation by time-scale modifications, such as the stretching of
the audio sequence or insertion or deletion of samples. In that case, the watermark detec-
tion scheme does not properly determine the value of the embedded watermark, resulting
in a high increase of the bit error rate.

A resynchronization algorithm that is able to provide a correct watermark detection
even in the presence of these attacks, while maintaining a perceptual transparency by a
perceptual noise shaping is presented subsequently. The consequence of an improved
watermark decoding is a decreased bit rate of the embedded watermark; however the bit
rate is still within an acceptable range for most copyright applications.

The possibility of improving the robustness of watermark detection and increasing
the resistance to attacks was studied. An audio decorrelation algorithm for the spread-
spectrum watermarking that uses least squares Savitzky-Golay smoothing filters is pro-
posed. The test results showed a significant improvement in the detection performance of
the described method, compared to the standard watermark detection, especially if a wa-
termarked audio sequence is attacked with mp3 compression or low pass filtering attacks.

In order to further improve the detection robustness and decrease the bit error rate,
channel coding was employed, because it has a property to reduce BER for a given water-
mark bit rate in comparison with the regular detection or equivalently increase an available
watermark bit rate for a given BER. The simulations showed that a channel coding main-
tains a reliable watermark bit rate for a fixed BER, even after severe attacks. However,
the introduction of the described turbo channel coding is justified only when the SNR per
symbol value is high enough and the iterative decoding of soft output values is able to
make the coding gain. One of the implementation issues was the harsh slope of the wa-
termark bit rate vs. BER curve and the sensitivity to cut attack, because the whole block
of bits is needed during decoding.

The third subproblem was identified using the following question: How can the overall
robustness to the attacks of a watermark system be increased using an attack character-
ization at the embedding side? Chapter 5 focused on increasing the robustness of the
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embedded watermarks using the attack characterization. Novel principles important for
our attack characterization implementation are presented, as well as watermark channel
models of interest.

The particular watermark channel model that was studied was a watermark channel
model in the presence of MPEG compression. We showed that a far more appropri-
ate model for the watermark channel in the presence of mp3 coding is the Rayleigh
frequency-selective fading model, because it describes more precisely the distortions that
appear. The experimental results suggest that the noise introduced by mp3 compression
can hardly be modeled as AWGN and that BER curves obtained by the Rayleigh fading
channel model have steepness and values more close to the experimentally derived ones.
The results confirmed that a far better watermark channel modeling is obtained by the
proposed model than with the usual AWGN watermark channel model.

Using the available theoretical background, we developed a novel audio watermarking
scheme that uses the attack characterization in order to obtain a high robustness against
standard watermark attacks. The watermark embedding and detection are based on the
frequency hopping method in the FFT domain. The experimental results proved a signifi-
cant advantage in the detection robustness that the proposed algorithm has, in comparison
with a direct sequence spread spectrum algorithm, with a significantly lower BER. In
addition, it is clear that the introduction of the attack characterization module addition-
ally improved the extraction reliability of both algorithms, decreasing the bit error rate,
most discernibly in the presence of MPEG compression and low pass filtering. The over-
all algorithm obtained a high detection robustness, while decreasing the computational
complexity and increasing the perceptual transparency of the watermarked signal.

At the end, it was shown that the attack characterization algorithm that was proposed
can be successfully used in other schemes as well. The detection performance of the
system using an attack characterization and the ISS modulation is significantly higher
compared to the method using the standard SS modulation, uses the statistical properties
of ISS modulation while maintaining a blind detection during the watermark extraction.
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