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REAL-TIME IMPLEMENTATION OF MPEG-1
LAYER 3 AUDIO DECODER ON A DSP CHIP

Student: Hung-Chih Lai ~ Advisor: Dr. Jwu-Shen Hu

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

In this thesis, an investigation is done for MPEG-1 Layer 3 audio coding standard.
A real-time implementation on a fixed-point DSP chip is also proposed. This thesis is
twofold: one is to introduce the MPEG-1 Layer 3 audio coding standard, including
encoder and decoder. The other is to describe software and hardware development
environment and implement a real-time decoder. The keys of implementation are
hand-coded in assembly language, fixed-point operation, an efficient algorithm,
multi-task and multi-thread management and verification. The decoder uses 7.1 kwords
of program memory and 17.2 kwords of data memory, respectively. This decoder is
34.16 MIPS and uses about 34% computation power of this DSP chip if it run at its

maximum speed, 100MHz.
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Chapter 1

Introduction

1.1  Audio Signal Compression

During the passed ten years, digital audio has essentially replaced analog audio
because the digital audio has many advantages compared to the analog. Digital audio
provides better preservation, cheaper distribution, and invokes various audio processing
easily. The most common format of all the digital audio is the Pulse Code Modulation
(PCM). PCM samples the sound at a fixed rate with fixed bits for the audio signal [1].
Recently, new digital audio applications have been used for network, communication,
broadcasting, multimedia, and computer systems which face constraints such as channel
bandwidth, limited storage capacity and low cost. The audio of CD-quality equivalent
using a standard sampling frequency 44.1 kHz, 16 bits quantization, two channel stereo
requries 1,411,200 bits per second. This means to be able to play an audio PCM format
with CD-quality over a network, we need more than 1.4 Mbit/s in bandwidth. Storing
one song of 4-minutes duration needs over 40 Mbyte disk storage. Therefore, how to

transmit audio signal on Internet with small bitrate or store in hardware with less



volume is an important issue. As a result, audio compression technology becomes more
and more precious.

In comparison with the digital video compression and speech compression, the
digital audio is relatively complex. The human ear has a sensitivity over a dynamic
range exceeding 100 dB. In contrast, the vision ability of human visual system are
higher than the resolution of general television or displayer. Compared to speech coding,
there are two disadvantage of audio coding. One is that no source model of the audio
signal is known as the speech coding. The other is the quality of the reproduced audio
signal should be much higher than speech coding.

Due to the urgency of audio compression and complexity it required, several
methods have been purposed to solve this problem. Audio coding methods can separate
into two categories: transform coding and subband coding. Transform coding
algorithms use unitary transforms for the time-to-frequency analysis. These algorithms
typically achieve high resolution spectral estimates with a good compromise of
adequate temporal resolution, like MSC (Multiple adaptive Spectral audio Coding,
Thompson Consumer Electronics) [2], OCF (Optimum Coding in the Frequency domain,
Brandenburg in 1987) [3], PXFM/hybrid (Perceptual transform coder, Johnston in 1988)
[4], CNET (Mahieux in 1989) [5]. Combining elements of above algorithms, ASPEC
(Adaptive Spectral Perceptual Entropy Coding) [6] was included in the ISO/IEC
MPEG-1 audio coding standards. Instead of transform coding, subband coding relies
upon frequency-domain representations of the signal obtained from banks of bandpass
filters. The MUSICAM (Masking pattern adapted Universal Subband Integrated Coding

And Multiplexing) [7] which was also included in ISO/IEC MPEG-1 audio coding



stadnard is derived from MASCAM (Masking pattern Adapted Subband Coding And

Multiplexing) which was purposed by IRT [§].

1.2  Digital Signal Processor

The general purpose Digital Signal Processor (DSP) is developed for
implementation of a wide variety of algorithms. Algorithms well suited for DSP
implementation are characterized by multiply-accumulate operations and linear data
access. Most algorithms require a fast, convenient framework for getting large
sequences of data, manipulating them, and restoring them. Farther, many signal
processing algorithms are organizied by multiply-accumulate operations such as
filtering or convolution. Therefore, DSP had been applied in many field like control [9],
consumer [10], military [11], image [12], telecommunications [ 13] and audio [14].

So far the performance of high level programming language, for example C or C++,
can not keep up assembly language. DSP provides many instructions for implemention
of using assembly language. In addition, DSP supports circular and bit-reversed
addressing. Circular addressing enables the user to set up a group of memory locations
that may be accessed one after the other without any extra test to determine when the
last memory location has been reached. Pointers to the memory locations automatically
wrap around to the beginning of the set once they reach the end. Bit-reversed addressing
caters to the needs of certain signal processing techniques, notably the
decimation-in-time Fast Fourier Transformation or Discrete Cosine Transformation,
effectively streamlining a computationally-intensive algorithm [15].

3



There are two types of DSP according to their operation mode and architecture. A
floating-point DSP is a processor capable of handling floating-point arithmetic where
real operands are represented using exponents. It performs higher performance but
requires higher power consumption and costs. A fixed-point DSP is a processor that
does arithmetic operations using integer arithmetic with no exponents. It uses the
scaling property to replace the exponent part and has to manipulate the location of

decimal point. A fixed-point DSP has powe-efficient performance and low cost.

1.3  Motivation

The International Standard Organization and the International Electrotechnical
Commission (ISO/IEC) adopted the MPEG-1 algorithm which was developed by the
Motion Picture Experts Group (MPEG) in 1992. The MPEG/Audio is one part of a
multiple part standard that addressed the compression of video part (11172-2), the
compression of audio part (11172-3) [16], and synchronization of the audio, video, and
related data streams, system part (11172-1). The audio part (MPEG/Audio), which is the
first standardize algorithm in audio compression field, had be applied into many way
[17], including

» Internet streaming ( Microsoft Media player, Apple Quick time)

» Digital audio broadcasting (Eureka-147 DAB, ARIB, DRM)
»  Sound for digital television (DVB, Video CD, HDTV)
» Portable audio devices (mpman, mplayer3, VAIO, Rio, and many more)



The MPEG/Audio offers three levels of compression, each with increasing
complexity and better sound quality. The MPEG/Audio Layer 3 (as known as MP3) is
the most complex scheme and provides best sound quality of the three layers. In
MPEG-1 standard, there are many filtering and matrix operations that are well suited for
DSP’s multiply-accumulate characteristic. Since MPEG/Audio Layer 3 is the most
complex layer that provides the best sound quality and DSP is well suited for its most
operations, we intend to realize a MPEG/Audio decoder on DSP chip. In this thesis
focus will be on the MPEG/Audio Layer 3 of the MPEG-1 standard only. Principles and
functionality of MPEG/Audio Layer 3 will be introduced in this thesis and real-time
implementation of decoder with mixed C and assembly language on a single DSP chip

will be presented.

1.4  Preface

This thesis contains five chapters. Chapter 1 is in the premise. Chapter 2
introduces the MPEG-1 Layer 3 standard, including principles and functionality. In
Chapter 3, the hardware and software environment where the decoder is developed are
introduced. Chapter 4 presents the implementation and performance verification. This

thesis finishes with conclusion and future works in Chapter 5.



Chapter 2

MPEG/Audio Layer 3 Coding

In this chapter, we describe the basic principles and algorithms in the
MPEG/Audio Layer 3 coding standard. The most important reason why MPEG/Audio
Layer 3 can compress digital audio signals effectively without perceptual loss is to use
the “quantization” and “entropy coding” techniques. Quantization removes the auditory
irrelevant parts of the audio signal without losing the sound quality by exploiting the
perceptual properties of the human auditory system. Removal of such irrelevant parts
results in inaudible distortion. Entropy coding is a lossless coding method that encodes
the quantized data to minimize the entropy of the quantized value of the audio signal
thereby achieving the goal of compression without any quality loss. The two techniques
are also wildly adopted in other compression standard, like image (JPEG) and video
(H.261) compression.

Section 2.1 will introduce the MPEG/Audio Layer 3 encoding standard and its

algorithm. Section 2.2 will explain the decoding process.



2.1 MPEG/Audio Layer 3 Encoding Algorithm

In this section the MPEG/Audio Layer 3 encoder will be described with its
functionality. The description of the encoding process is based on the block diagram in
Figure 2.1. The input audio signal which comes from a single channel PCM signal is
passed through a polyphase filter bank. This filter bank divides the input signal into 32
equally-space frequency subbands. After this process, the samples in each subband are
still in the time domain. A Modified Discrete Cosine Transform (MDCT) is then used to
map the samples in each subband to frequency domain. In the meantime, input signal
after FFT transformation passes through a psychoacoustic model that determines the
ratio of the signal energy to the masking threshold for each subband. The distortion
control block uses the signal-to-mask ratios (SMR) from the psychoacoustic model to
decide how to assign the total nomber of code bits available for the quantization of the
subband signals to minimize the audibility of the quantization noise. The quantized
subband samples are coded with the lossless Huffman coding to decrease the entropy of
samples. Finally, the end block takes the Huffman coded subband samples and side
information into a packed bitstream according to the MPEG/Audio standard.

In the following subsections, we will describe the operation and the functionality in

detail for each block in the block diagram.



Digital Audio Distortion Coded
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: Non-uniform
Filterbank Huffman
] i7ati ] ] —
32 subbands MBCT quantization encoding _
rate control Bitstream
loop formatting
Window L ;
switching ~ Codingof £
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Figure 2.1 MPEG/Audio Layer 3 encoder block diagram [17].

2.1.1 Analysis Polyphase Filter Bank

The first step in the encoding process is the filtering of the audio signal through a
filter bank. The analysis polyphase filter bank divides the audio signal into 32
equal-width frequency subbands and decimates the subband samples by a factor 32 with
good time resolution and reasonable frequency resolution. Decimation results in an
aggregate number of subband samples that equals the source signal but also introduces
some aliasing [18].

In one frame a sequence of 1152 PCM audio samples are filtered so each subband
contains 36 subband samples. The following equation derives the filter bank outputs:

63 7

Stfi]= ) > MIil[k]* (C[k + 64 j]* x[k + 64 j]) 2.1)
k=0 j=0

where:

11s the subband index and ranges from 0 to 31,

St[i] is the filter output sample for subband i at time t, where t is an integer multiple of

32 audio sample intervals,



C[n] is one of 512 coefficients of the analysis window defined in the standard,

x[n] is an audio input sample read from a 512 sample buffer, and

C*i+)*(k-16)*n
64

MTi][Kk] = cos[ ] are the analysis matrix coefficients.

Manipulate Equation (2.1) into a intelligible filter convolution Equation (2.2) for
more convenient to analysis.

St[i] = 3 X[t =n]*Hi[n] (2.2)
n=0
where:

X[T] is an audio sample at time T,
QR*i+)*(n-16)*n
64
h[n]= -C|[n], if the integer part of (n/64) is odd,

= C[n] otherwise, for n=0 to 511.

Hi[n] = h[n]*cos[

] with

The coefficients of h[n] are the prototype low-pass filter for the polyphase filter
bank, as Figure 2.2 shown. The modulation of the prototype filter (h[n]) with a cosine
term  (M[i][k]) results in filter shifting. Clearly, Hi[n] are the filter banks that shift the
low-pass response to the appropriate frequency band, so these are called “polyphase”
filter bank. These filters have center frequencies at odd multiples of n/(64T) and each
has a bandwidth of n/(32T) where T is the audio sampling period. For example, if
sampling period T is 31.25 ms (32 kHz sampling frequency), the frequency response of
the polyphase filters has center freqeuncy 250 Hz and bandwidth 500 Hz while 2n

presents the sampling freqeuncy, as Figure 2.3 shown.



h[n]
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Figure 2.2 H[n], the prototype low-pass filter for the polyphase filter bank.

In Figure 2.3, the overlap of adjacent polyphase filters is inimicable for audio
compression, because alias will be introduced by this overlap and decimation [19].
Signal frequency near nominal subband edges will generate output in two adjacent
polyphase filter. Figure 2.4 shows how a pure sinusoid tone, which has frequency near
subband edge, appears at the output of two polyphase filters. This disadvantage will be
cancelled by using a series of butterfly computations later and appropriate design of

analysis/synthesis filter bank in the encoding/decoding part [20].
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Figure 2.3  Frequency response of polyphase filter bank.

The samples of the output in each subband are still in the time domain, and will be
processed through a MDCT block which transfers the samples from the time domain to
the frequency domain. Figure 2.5 illustrates the analysis polyphase filter bank and its

detail procedure.
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Figure 2.5 Diagram and procedure of analysis polyphase filter bank [16].

2.1.2 MDCT and Alias Reduction

€ Modified Discrete Cosine Transformation

In this process the 32 subbands are mapped into a Modified Discrete Cosine

Transform (MDCT) [21] representation. Performing this transformation will enhance

the frequency resolution per subband. Equation (2.3) shows the formula for MDCT

transformation.

n-1

T n. .. ) n
X =Y z, cos((—R2k+1+—)2i+1)) ,fori=0~ —-1
= 2 zecos(( S)@2i+D) :

k=0

13
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Prior to computing the MDCT four window functions are applied to the subband
samples. MPEG/Audio Layer 3 specifies two different MDCT block lengths: a long
block of 18 samples or a short block of 6. The windowing use either long window or
short window depending on the dynamics within each subband. If the subband samples
in a given subband show a stationary behavior, the regular window, long window (Type
0), is used. If the subband samples contain transients, a short window (Type 2) is
applied to subdivide the subband outputs in frequency in order to enhance the time
resolution. The switching mechanism helps to prevent the appearance of pre-echo
phenomenon which will be introduced in next subsection. The other two windows used
to handle the transitions from long-to-short or short-to-long are called start window
(Type 1) and stop window (Type 3). Note that the short block length is one third of a
long block. In short block mode, three short blocks replace a long block so that the
number of MDCT samples for a frame of audio samples is unchanged regradless of the
block size selection. For a given frame of audio samples, the MDCT can all have same
block length (long or short) or have a mixed-block mode. In the mixed block mode the
MDCT uses long window for the two lower frequency subbands and short window for
the 30 upper subbands. This mode provides better frequency resolution for the lower
frequencies without sacrificing time resolution for the higher frequencies.

The window functions are given as following and shown in Figure 2.5.
a) block type=0 (long window)
2. = x sin(Z-(i + 1)) fori=0~ 35 (2.3)
1 1 36 2 B .
b) block type=1 (start window)
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o1
X: sin(— (1 +— 0~17
i (36( 2))
X . 18~23
Z; = T ! 1 , fori= 24 ~ 29
X; sin(—(i =18 +—)) ~
12 0 2 30 ~ 35

¢) block type=3 (stop window)

0

Y/ 1 0~5
X; SIH(E(|_18+E)) ‘ 6~11
z, = , fori=
Xi | 12~17
N/
X. sin(— (I +— 18 ~ 35
i (36( 2))
d) block type=2 (short window)
n,. 1
Z. =X sin(—(+— ,fori=0~11
i =X (12( 2))
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block-type=0 block-type=1
1 T T T 1 T T T
0.8+ 0.8+
0.6 0.6
0.4r 0.41
0.2+ 0.2+
0 0
6 12 18 24 30 6 12 18 24 30
subband sample number subband sample number
block-type=2 block-type=3
T T T 1 T T
0.8
0.6
0.4
0.2
0
6 12 18 24 30 6 12 18 24 30
subband sample number subband sample number

Figure 2.6 Illustration of the four applicable window types.

&€ Alias Reduction

Before passing the frequency lines a reduction of the aliasing introduced in the
analysis polyphase filter bank is removed. The aliasing is removed at this early stage in
order to reduce the amount of information for transmission. The reduction is obtained
by means of a series of butterfly computations, see Figure 2.7. The cs; and ca; constants
are tabulated in standard [16]. The butterfly operations with appropriate weighting

cancel the alias caused by the overlap of two adjacent overlapped subbands.
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Figure 2.7 Illustration of alias reduction butterflies.

2.1.3 Psychoacoustic Model

It is apparent that while we can hear a very silent sound like a needle falling, and
easily a very loud noise like an airplane taking off, it is impossible to discern the falling
needle if we hear the airplane at the same time. This phenomenon shows that hearing
system adapts dynamic variations in the sound, and some tone we will not hear.

The psychoacoustic model is a pattern that simulates the human sound perceptional
system. The model is used in the encoder only to decide which parts of the audio signal
are acoustically irrelevant and which parts are not, and removing the inaudible parts. It
takes advantage of the inability of human auditory system to hear quantization noise
under conditions of auditory masking. This masking is a perceptual property of the

human auditory system that occurs when the presence of strong audio signal makes a
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temporal or spectral neighborhood of weaker audio signals imperceptible. The results of
the psychoacoustic model are utilized in the MDCT block and in the nonuniform
quantization block.

Auditory masking consists of three masking principles, which being described

below:

€ Absolute Threshold of Hearing

The absolute threshold of hearing is characterized by the minimum amount of
energy needed in a pure tone such that it can be detected by a listener in a quiet
environment. If we measure the energy of a number of tone frequencies, the relation
curve can be plotted on a graph like Figure 2.8 [22]. Since the listener has no a prior
knowledge regarding actual playback levels, the energy values, sound pressure level
(SPL) are expressed in terms of decibels (dB), with the value of 0 dB assigned to the
weakest energy in +/- 1 bit that can be heard. In this figure, tones in the neighborhood of
3,000 Hz require least intensity to be heard. As a result, their threshold is expressed as 0
dB and all other values are expressed relatvie to this value. The absolute threshold of
hearing is also called the threshold in quiet. This absolute threshold of hearing varies

with frequency and covers a dynamic range of more than 60 dB, as shown in this figure.
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€ Frequency Masking

Frequency masking, also called simultaneous masking, is a frequency domain

phenomenon where a low-level signal (the maskee) can be made inaudible by a

simultaneously occurring stronger signal (the masker) as long as masker and maskee are

close enough to each other in frequency. A frequency masking threshold can be

measured below which any signal will not be audible. The masking threshold depends

on the sound pressure level and the frequency of the masker. Take an example of the

masking threshold for the SPL

the signal Sy, and any signal’s energy under the border of this masking threshold will be



masked by the presence of Sg. The weaker signals S; and S, are completely inaudible.
This is because their individual sound pressure levels are totally below the masking
threshold. The signal Sp is only partially masked and the perceivable portion of the
signal is above the masking curve. Thus, it is possible to increase the quantization noise
in the subband containing the signal Sy up the level AB, which means that fewer bits are
needed to represent the signal in this subband.

Without any masker, a signal is also inaudible if its sound pressure level is belw
the absolute threshold. The psychoacoustic model supplies the nonuniform quantization
block with information about how to quantize the frequency lines. The quantization of

the frequency lines is adapted to the limitations of the human ears perception.

L
masker
© 0
= i king threshold
2 threshold in quiet B
©
=
o masked
z
= 40 |
g
=
0
0.02 0.5 1 2 B 5 20
frequency, kHz

Figure 2.9 Frequency masking threshold and threshold in quiet [23].
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€ Temporal Masking

In addition to simultaneous masking in frequency domain, the temporal masking,
also called nonsimultaneous masking, plays an important role in human auditory
perception in time domain. It may occur when two sounds appear within a small interval
of time. The stronger sound may mask the weaker one, even if the maskee precedes the
masker.

Two temporal masking effects occur before and after a strong sound. If a sound is
masked after a louder sound it's called post-masking, and if it's masked ahead in time it's
called pre-masking, as Figure 2.10 shown. Signal in the dark areas will be masked. Note
that in Figure 2.10, post-masking uses a different time lasted longer than pre-masking.
Post-masking continues more than 160 ms after the masker while pre-masking only acts
20 ms befor the masker.

Pre-masking can help to mask the appearance of pre-echoes. Consider the case
where a silent period is followed by a percussive sound, such an transient sound cause
large instantaneous quantization errors. These pre-echoes can become distinctly audible,
especially at low bit rates. The effect of pre-echoes can be mitigated by the time domain
effect of pre-masking if the time spread is of short duration. Take an example of 44.1
kHz sampling rate, the most common used, 1152 samples stand for about 26.1 ms. The
duration of pre-masking effect is about 20 ms. Quantization errors of the 1152 samples
spread in time over the pre-masking can mask and become audible. If we use smaller
transformation block, the quantization errors can be limited in a smaller time duration.

Using short MDCT block transformation, which is 3 times shorter than long block, the
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quantization errors will spread in 8.7 ms. Obviously, the duration is less than the time of
pre-masking appearance and pre-masking effect will mask the quantization errors.

Since the post-masking effect extends over 160 ms, even in long window case, the
quantization errors of a transient sound will not be heard. Both pre-masking and

post-masking are being exploited in the MPEG/Audio Layer 3 encoding algorithm.
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Figure 2.10  Temporal masking threshold [23].

2.1.4 Nonuniform Quantization

The nonuniform quantization block which received the frequency line from the
MDCT block and window switching, masking informations from the psychoacoustic
model, performs the important key techniques “quantization” and “Huffman coding”.
This block outputs the coded data satisfied human auditory system and their correlative
side information.

The nonuniform quantization loop is the most time consuming part of

MPEG/Audio Layer 3 encoding algorithm. It depends on the variation of audio signal
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and does not have a fixed execution time. The more party-colored the signal is, the more
encoding time it needs. The description of the Layer 3 loop module is subdivided into
three levels. The top level is called “loops frame program”. The loops frame program
calls a subroutine named “outer iteration loop” which calls the subroutine “inner
iteration loop”. For each level a corresponding flowchart is shown below.

The loop module, as Figure 2.11 shown, quantizes an input data vector of spectral
lines in an iterative process according to several demands. The inner loop quantizes the
input data and increases the quantizer step size until the output data can be coded with
the available amount of bit. After completion of the inner loop, an outer loop checks the
distortion of each scalefactor band and, if the allowed distortion is exceeded, amplifies

the scalefactor and calls the inner loop again.

0=

v

Calculation of available bit

2

Reset of iteration variable

v

y all spectral values zero ?
n

v
( Outer Iteration Loop

Y

V

Calculate the number of unused bit

) N\ L

Y
C RETURN )

Figure 2.11 MPEG/Audio Layer 3 loops frame program [16].
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€ Outer Iteration Loop (distortion control loop)

The outer iteration loop controls the quantization noise which is produced by the
quantization of the frequency domain lines within the inner iteration loop. The
coloration of the noise is done by multiplication of the lines within scalefactor bands
with the actual scalefactors befor doing the quantization. If the quantization noise is
found to exceed the masking threshold, the scalefactor for this band is adjusted to
reduce the quantization noise. The outer loop is executed until the actual noise is below
the masking threshold for every scalefactor band. Figure 2.12 shows the flowchart of

outer loop.
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Figure 2.12 MPEG/Audio Layer 3 outer iteration loops [16].

€ Inner Iteration Loop(rate control loop)

The inner iteration loop does the actual quantization of the frequency domain data
and prepares the formatting operation. The Huffman code tables assign shorter code
words to smaller quantized values. If the number of total bits of resulting from the

Huffman coding operatoin exceeds the number of bits available to code one frame, this
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can be corrected by adjusting the global gain to result in a larger quantization step size,
leading to smaller quantized value. This operation is repeated with different
quantization step sizes until the resulting number of bits demand for Huffman coding is
small enough. Figure 2.13 shows the detail flowchart of the inner loop.

Except scaling, quantization and Huffman coding operation, the Huffman table
selection, subdivision of the big value range of subregions and the selection of the

quantizer step which will be introduced in the next subsection also take place here.
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Figure 2.13 MPEG/Audio Layer 3 inner iteration loops [16].
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2.1.5 Huffman Encoding

In this block an entropy coding of the quantized frequency lines is performed using

the Huffman coding algorithm based on 32 static Huffman tables. The Huffman coding
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provides lossless compression and thereby reduces the amount of data to be transmitted
without the quality loss.

The most popular technique for removing coding redundancy is Huffman coding.
In Huffman coding the entropy is based on a statistic distribution of the group of data
values. From the data statistics a substitution table covering all data values is
established. In this table, values with a high probability of being present in the data are
associated with short code words and data rarely present are associated with longer code
words. Thereby, the Huffman coding is a variable-length coding (VLC).

MPEG/Audio Layer 3 delimits the frequency lines into three sections and adopts
an ESCAPE value in one of the three section in the coding process for two reason:

1.The order is by increasing frequency except for the short MDCT block mode. For
short block there are three sets of window values in a subband so the ordering is by
frequency, then by window, then by scalefactor. Ordering is advantageous because large
values tend to be at the lower frequencies and long runs of zero or near-zero values tend
to be at the higher frequencies.

2.When a large number of symbols is to be coded, the construction of the optimal
binary Huffman code table is a nontrivial task.

With the benefit for the first reason, the encoder delimits the ordered frequency
lines into three distinct regions. This enables the encoder to code each region with a
different set of Huffman tables specifically tuned for the statistics of that region. Three
region are called “rzero”, “countl region” and “big_value region”.

Starting at the higher frequency, the encoder identifies the continuous run of

all-zero values as one region, “rzero”. This region does not have to be coded because its
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size can be deduced from size of the other two regions. However, it must contain an
even number of zeroes because the other regions code their values in even numbered
groupings.

A second region, “countl region”, comprises of a continuous run of values
consisting only of -1, 0, or 1. Two Huffman tables for this region code 4 values at a time
so the number of values in this region must be a multiple of 4.

Finally, a third region covers all the remaining values, called “big_values region”.
The 30 Huffman tables for this region code the values in pairs. This region is further
subdivided into three subregions that each has its own specific Huffman table. In the
“big_values region”, due to the disadvantage of the second reason in page 28, an
“ESCAPE” value is introduced in order to improve the coding efficiency before coding
the frequency lines. In this region, values exceeding 15 are repreesented with the
number 15 and the remainder is the ESCAPE value. Depending on the size of the
ESCAPE value a number of bits, called linbits, is assigned to represent the ESCAPE

value, see the following Equation (2.7).

ESCAPE value = quantized value -15, if quantized value > 15 (2.7)

linbits = word length(ESCAPE value)

Figure 2.14 shows the relation of three Huffman coded region and scalefactor.

Table 1 lists the characteristic of the 32 Huffman tables of MPEG/Audio Layer 3

standard.
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Table 1  Characteristic of 32 Huffman tables.

Table Max. Table Max. linbits Max. Region
index value index value value * used

A 1 B 1 No count 1

0 0 16 15 1 16

1 1 17 15 2 19

2 2 18 15 3 23

3 2 19 15 4 31

4 not used 20 15 6 79

5 3 21 15 8 271

6 3 22 15 10 1039

7 5 23 15 13 8207 Big

8 5 24 15 4 31 value

9 5 25 15 5 47

10 7 26 15 6 79

11 7 27 15 7 143

12 7 28 15 8 271

13 15 29 15 9 527

14 not used 30 15 11 2016

15 15 31 15 13 8207

* means the addition of maximum vaule and ESCAPE value
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2.1.6 Bitstream Formatting

The last block of encoding process is to produce a MPEG/Audio Layer 3 compliant
bitstream. The Huffman coded frequency lines, the side information and a frame header
are assembled to form the bitstream. The bitstream is partitioned into frames each
represents 1152 audio samples. The header describes which bit rate and sampling
frequency that is being used for the encoded audio. The side information tells what

block type, Huffman tables, subband gain and subband factors are being selected.

€ Bit Reservoir

In this block, an enhancement method called “bit reservoir” is used to fit the
encoder’s time-varying demand on code bits. The encoder can donate bits to a reservoir
when it needs less than the average number of bits to code a frame. Next, when the
encoder needs more than the average number of bits to code a frame, it can borrow bits
from the reservoir mechanism. The encoder can only borrow bits donated from past
frames; it cannot borrow from future frames. The MPEG/Audio Layer 3 bitstream uses
a 9-bit pointer, called main_data begin, in each frame's side information to point out the
location of starting byte of audio data for that frame. An example of how the main data

can be distributed is illustrated in Figure 2.15.
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Figure 2.15 An example of bit reservior [16].

main_data 3

2.2  MPEG/Audio Layer 3 Decoding Algorithm

In this section the MPEG/Audio Layer 3 decoder will be described with its

functionality. The decoding process is based on the block diagram in Figure 2.16. The

decoder has three main parts: “Decoding of Bitstream”, “Inverse Quantization”, and

“Frequency to Time mapping”.

The input coded bitstream is passed through the first parts to synchronize and

extract the quantized frequency line and other information of each frame. The inverse

quantization part dequantizes the frequency line according to the output of previous part.

Finally, the last part is a set of reverse operations of the MDCT and analysis polyphase

filter bank in the encoder. Its output is the audio signal in PCM format.
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In the following subsections, we will describe the opeation and the functionality

for each block in Figure 2.16.

Coded )
bitstream Decoding of Inverse Frequency to Audio
. —» . A . . PCM out
n Bitstream Quantization Time mapping

Figure 2.16 MPEG/Audio Layer 3 decoder block diagram.

2.2.1 Decoding of Bitstream

This decoding part effects to synchronize and extract the quantized frequency lines
and other information of each frame. Of course, it needs to synchronize where a frame
begins and where the data resides. The block diagram of this part is shown in Figure

2.17 and will be discussed as following.

Huffman
code bits

Huffman Magnitude & sign
Decoding A o

[

Bitstream
n

Huffman Info
Decoding

Huffman
Information

Synchronization

Scalefactors

Scalefactor
Decoding

Scalefactor
Information

Ancillary
Data

Figure 2.17 Decoding of bitstream block diagram [24].
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€ Synchronization

The purpose of this block is to receive the incoming bitstream, identify the
contents of the bitstream and pass the information onto the succeeding blocks in the
decoder.

a) The Format of the Bitstream:

The contents of a MPEG/Audio bitstream is organized into frames, each contains
information to reconstruct the audio PCM samples. A frame consists of four parts:
header, side information, main data, and ancillary data.

b) Header:

The header part of the frame contains a synchronization word and system
information. To be able to detect the beginning of a new frame, each frame starts with a
12 bit synchronization word. The rest of the header describes the type of frame, that is
which layer is used in the frame, which bitrate is used for transmission, the sampling
frequency of original digital audio signal, whether the audio signal is single channel or
dual channel, and other additional informations. Figure 2.18 shows the MPEG/Audio
Layer 3 header format.

M’paddmgi copyrighg

layer il’ldex blt IIIIOd ernp hasi
— > Jnode S
synchronization word 7 -

gyl N N N
LD)‘ ksamp]jngs} %ode‘ b

prequency ' extension '
error rivate | ori ina! |
3 p a g :

protection bit ' copy

Figure 2.18 MPEG/Audio Layer 3 header format [24].
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¢) Side Information:

The side information sectoin in the frame contains the necessary information to
decode the main data. The side information contains information concerning which
Huffman tables to use during the Huffman decoding process, and information of
scalefactors. The side information section also contains information about where the
main data begins due to the "bit reservoir" technique described in previous section 2.1.6.
d) Main Data:

The main data section contains the coded scalefactor value and the Huffman coded
data. See Figure 2.14 in section 2.1.5.

e) Ancillary Data:

It is possible to include an ancillary data section in each frame. The format of this
ancillary data is user defined and can be used for, e.g. the title, the artist and the album
of the song. The ancillary data is placed between the end of the main data bits in one

frame and the start of the main data bits in the next frame.

€ Huffman Decoding

In this block the decoding of the Huffman code bits is performed. Since the
Huffman coding is a VLC method, a single code word in the middle of the Huffman
code bits cannot be identified without starting to decode from a point in the Huffman

code bits known to be the start of a code word [24].

€ Huffman Info Decoding

The Huffman Info Decoding block serves to setup all the parameters necessary for

the Huffman decoding block to perform a correct Huffman decoding. The first task to
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perform is to collect data in the side information which describs the characteristics of
the Huffman code bits. This includes where to find the Huffman code bits in the
bitstream, to decide which Huffman tables are used in each region and whether
ESCAPE values are present in the Huffman code bits. Moreover, this block must make
sure that all frequency lines are generated regardless of how many frequency lines are
described in the Huffman code bits. When fewer than 576 frequency lines appear, the

Huffman Info Decoding block must perform a zero padding to fill the lack of data.

€ Scalefactor Decoding

The purpose of the scalefactor decoding block is to decode the coded scalefactors,
1.e. the first part of the main data. Input to this block is scalefactor information and
coded scalefactors. The output of the block is the decoded scalefactors, to be used in the

next inverse quantization block.

2.2.2 Inverse Quantization

The purpose of this block is to reestablish a perceptually identical data of the
frequency lines generated by the MDCT block in the encoder. The descaling is based on
the scaled quantized frequency lines reconstructed from the Huffman decoding block
and the scalefactor reconstructed in scalefactor decoding block. The descaling
calculation of the frequency lines is shown in Equation (2.8).

4 %(global7gain—210—85bg[i])
iy s - f N3
Xr[l] - SIgn(lS[l]) * abS(IS[l]) ¢ Zscalefacfmultiplier*(sf[i]+preflag*pt[i]) (28)

where:

is[i] is the frequency line reconstructed by Huffman decoder,
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global gain, sbg[i], scalefac_multiplier, sf[i],preflag,pt[i] are from scalefactor decoding.

2.2.3 Frequency to Time Mapping

This decoding part performs to reproduce the audio signal from the dequantized
frequency line. This part contains several sub-blocks as Figure 2.19 shown and will be

described in the following.

Alias Inverse Frequency Psglnygllf;sli PCM
Reduction MDCT Inversion Filter Bank output

Figure 2.19 Frequency to time mapping [24].

&€ Alias Reduction

In the MDCT block within the encoder it was described that an alias reductoin was
applied. In order to obtain a correct reconstruction of the analysis polyphase filter bank
in the algorithms to come back, the aliasing artifacts must be added to the decoding

process again.

€ Inverse MDCT

The frequency lines from the alias reduction block are processing through IMDCT

block. The analytical expression of the IMDCT is shown in Equation (2.9)

| =

Nl

1

x =3'X, cos(zﬂ(zi 1 +g)(2k +1)) ,fori=0~n-1 (2.9)
n

=
i}

0

where:
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X 1s the frequency line,

n is 12 for show window, and 36 for long window.

€ Frequency Inversion

In order to compensate the decimation used in the analysis polyphase filter bank,

every odd time sample of every odd subband is multiplied with -1.

€ Synthesis Polyphase Filter Bank

Each time 32 samples, from each of the 32 subbands, are applied to the synthesis

polyphase filter bank and 32 consecutive audio samples are calculated. Figure 2.20

illustrates the algorithm and procedure of synthesis polyphase filter bank.
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Figure 2.20 Diagram and procedure of synthesis polyphase filter bank.
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Chapter 3

Environment of Hardware and Software

In this chapter, we describe the hardware and software environment briefly. The
hardware is concerned with the development of programs while the software influences

the development speed and enhancement.

3.1 Hardware Environment

The hardware used in this thesis is Texas Instruments™ TMS320C5402 DSK
(DSP Starter Kit). DSK5402 provides a low-cost, standalone C54x development
platform that enables users to evaluate and develop applications for the C54x DSP. It
also provides the DSK schematics that is useful for someone who wants to design the
DSP embedded system. DSK5402 contains many components and interfaces including:
» 100 MHz VC5402 DSP
» 64 K SRAM and 256 K FLASH
» 2 AIC (Analog Interface Circuit)

» DAA (Data Access Arrangement) ,the telephone interface

»  Microphone and speaker
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» RS-232 UART interface
» Parallel and JTAG interface for debug
Figure 3.1 shows the hardware block diagram of DSK5402. For more information

about DSK5402, please refer to [25].

PC/ RS232 UART 64k*16 256k*16
TERMINAL Q DRIVER [*™  wo) PM/DM (PM/DM) [ MEMORY EXPANSION IF_|
DB-9P i i i Parallel HOST
l EMIF | Pt f— | e
A A A Controller
v T
. y y
sPEAKER ==
EI TLC320 N
- Mux CPLD DB-
ADSO 2%p
MICROPHONEC——0> D<—J . : 5402
]
- [rrac
TBC
50VDC
THL TLC320 | ] SUPPLY
w [T, B
ux
Ll .| cwrrcn | [PERIPHERAL EXPANSION IF |
I N I
LD 8-POS DIP SW POWER LET

Figure 3.1 DSP Starter Kit’s functional block diagram [25].

The kernel of DSK is Texas Instruments™ TMS320VC5402 DSP chip [26]. This
chip is a 16 bits, fixed-point DSP with specific hardware logic, on-chip memory,
on-chip peripherals, and a highly specialized instruction set. All operations are executed
on this chip, includeing the bitstream access, conditional control, vector, matrix and

filter operations. Figure 3.2 shows the architecture of C54x DSP.
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Figure 3.2  Architecture of TMS320C54x DSP [26].

In general, C54x DSP have a total memory space of 192K 16-bit words. This space
is divided into three specific memory segments: 64K words of program, 64K words of
data, and 64K words of I/O. The parallel structure of the C54x architecture and the
dual-access capability of the on-chip DRAM allow the C54x four concurrent memory
operations. There are several advantages of operating from on-chip memory:

»  Higher performance because no wait states are required.
»  Lower cost than external memory.
»  Lower power than external memory.

The main advantage of operating from off-chip memory is the ability to access a
large memory space. Since this hardware is a DSK board, its program and data use the
same 64K memory without separating program and data memory. Figure 3.3 shows the

memory maps for the C5402 DSP and DSK’s external memory.
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Hex Hex

0000 Program 0000 Data
Memory Mapped
Reserved 005F Registers
007F 88?2 Scratch-Pad RAM
0080 0080
. On-chip DARAM
On-chip DRAM (16K x 16-bits)
3FFF 3FFF
4000 4000
External SRAM
1 Wait -state External SRAM
1 Wait -state
FF7F
FF80 Interrupts
(external)
FFFF FFFF

Figure 3.3 Memory maps of C5402 and external memory [26].

3.2 Software Environment

The DSP software offers Integrated Development Environment (IDE) tools, called
Code Composer Studio® which user can develop quickly and debug easily in
programming stage. Figure 3.4 shows the IDE software environment. This software
development support enables user to develop DSP applications that can be loaded and
executed on the C54x DSK. DSP applications can easily be developed with the use of

high-level DSP board control and on-board peripheral interface functions. This DSP
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support package allows users to quickly develop DSP applications for evaluation of the
DSK or the application.

The DSP source code debugging support consists of a debugger driver compatible
with TI’s Code Composer debugger. DSP source code debugging support enables us to
load, execute, and test DSP applications in their native C or assembly language source
code formats. The debugging environment gives visibility into the operation of DSP
applications by:

»  Supporting execution control with single-stepping and breakpoint capabilities.
»  Enabling code to be profiled for performance monitoring.

For more information of source code debugging, please refer to [27][28].
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Figure 3.4 Software IDE environment.

43



Figure 3.5 shows a software development flow used in this thesis. Through three
stages: C complier, Assembler and Linker, it generates the executable COFF (Common

Obiject File Format) file.

c N
source
file
4
)
C complier
Assembler Assembler
source source
Y
~
Assembler
COFF
object
files
Linker Run-time
command Linker support
file library
Executable
COFF
file

Figure 3.5 Software development flow [27].
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Chapter 4

Implementation and Verification

MPEG/Audio Layer 3 decoder had been accomplished based on Win32 or
Unix-like OS several years ago. But there is a few decoder based on single chip like
DSPs or FPGAs. For example, there are shareware WinAmp® and Winplay® for
Win32 system and freeware FreeAmp® for Linux. But we can't find any decoder based
on DSPs except from commerce, especially for fix-point DSPs. Since the PC or
workstation has enough large memory and fast execution speed, the programmer need
to concentrate on the algorithm only. Referencing the standard C code can implement
such decoder straightly and easily. In other way, implementation on DSP chips not only
has to using the not-user-friendly assembly language but also has to coding in

consideration of memory and speed.

Section 4.1 describe the different of implementation between PC and DSP,
including handling the fixed-point operation, an efficient algorithm of IMDCT and
synthesis polyphase filter bank, and multi-task, multi-thread management. Section 4.2

exhibits the performance of this fixed-point DSP based decoder.
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4.1  Implementation

4.1.1 Fixed-Point Operation

Although this fixed-point DSP can support floating-point operations as well, it
calls for more instructions cycles and memories. Accommodate to the architecture of
this fixed-point DSP chip, all mathematics are handled by fixed-point operation in the
decoder. Fixed-point operations have to consider the dynamic range of all mathematics,
scaling operation and overflow situation. This subsection will discuss those

consideration block by block in detail.

€ Synchronization and Side Information Decoding

The two blocks just synchronize each frame and get the information which is in the
integer range. We do not discuss their fixed-point operation since synchronization and
side information decoding contain only logical operation and integer mathematics.

There are no any scaling operation and overflow situation.

€ Scalefactor and Huffman Decoding

Scalefactor decoding extracts the scalefactor used for the inverse quantization. Its
dynamic range is 0 to 15 which expressed by one to four bits.

Refer to Table 1, Huffman decoding operation decodes the encoded quantized
value and the maximum value is 8207. The dynamic range of Huffman decoding value
influences the inverse quantization block. These two block use integer operations

without any overflow condition.
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€ Inverse Quantization

Except normal mathematics of addition and multiplication, the decoder algorithm
also contains logarithmic and exponential operations, e.g. the inverse quantization. The
inverse quantization equatoin, Equation (2.8), can be manipulate into a familiar

equation:

Xr[i] = sign(is[i]) *is*'® * 2°° 4.1)

where -88.5 = exp = 115, 0 = is[i] = 8207

Since the characteristic of audio signal and encoder, exp and is[i] will manipulate
in good relative value. The dynamic range of Xr will be |Xr| < 1. we can realize this
equation on fixed-point operation by using logarithm and exponentiation. First, take the

logarithmic operation on Equation (4.1) and derive Equation (4.2).
Y[i]= In(|Xr[i]|) = %In(is[i]) +exp*In(2) (4.2)

Now the problem is how to calculate In(is) and compute the final result Xr[i] from

Y[i]. The logarithm of Taylor expansion can be written as Equation (4.3).

2 XS Xn

XX _X
InQl-x)=-1 I . 4.3)

where -1 < x<1.

Since is[i] is an integer, it should be scaled to an appropriate range as Equation (4.4)

and (4.5) before using the Taylor’s equation.

is = C(1-x) (4.4)
where C =2V,
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In(is[i]) = In(C) + In(1-x) = N*In(2) + In(1-x) (4.5)
Experimental results show that for n=11 in Equation (4.3), a good audio
decompression can be achieved [29]. The maximum value of is[i] is 8207, so the
dynamic range of In(is) will be |In(is)] < 16 , and Q11 format is sufficient for this
operation.
After getting Y from the logarithmic operation, we calculate Xr[i] from Y[i] by
performing exponential operations. The exponentiation can be written as Taylor

expansion as Equation (4.6).
. X
" =l+x+— +—+.....+— (4.6)
21 3

where -0co0 <x < 0
The Y[i] given by logarithmic calculatoin is in Q11 format. Therefore, the MSB5
bits are integer and LSB11 bits are fractional part. It is convenient to rewrite the

equation as

Xr[i]= e = g™ *¢* 4.7)
Now look into the fraction part, if x is smaller than 0.5, the Taylor equation

converges quickly. If it is larger than 0.5, it converges very slowly. Therefore, if X is

larger than 0.5, Equation (4.7) should be rewritten as

Xr[i]=e"™ =g *e* =g " *xgx? (4.8)

After expansion, we can implement the above equations easily by using the “poly”
instruction which is supported by C54x DSP. This instruction is useful for polynominal

evaluation to implement computations that take one cycle per monomial to execute.
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Finally, we get the Xr[i] in Q15 format which means the dynamic range of Xr[i] is
[Xr[i]| <1.

Due to the mixed integer and fraction numbers in original algorithm, we usually
have to scale the number in appropriate scaling for fixed-point operation. The
fixed-point operation is a common acquaintance, so we will not discuss the detail
scaling operations between integer and fraction mode in this thesis. For more
information about fixed-point operation, please refer to [26] [30]. In this block, we

totally use the QO (integer), Q15 (fraction), and Q11(mixed integer-fraction) formats.

¢ IMDCT

The IMDCT Equation (2.9) can be viewed as a convolution of two vectors.

Manipulate the IMDCT operation into a familiar Equation (4.9) for long window case.
17

X; = > XkYki, fori=0~35 (4.9
k=0

where Yki = cos(7”—2(2i +19)(2k +1))
The dynamic range of x; can derive from Equation (4.10)

X, =

17
> XkYki
k=0

< 3| XK|Yki[ < 3" ki max| Xk| (4.10)
k=0 k

Since the dynamic range of Xk and Yki are 0< |XK|, |Yki| <1, the maximum value of x;

17
is Z|Yki|. From the standard, the maximum value of x; is smaller than 12. If the worst
k

case occures, x; will overflow and Q15 format will be fail. We assume that in general
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case, digital audio will not cause the overflow since the general digital audio does not

have tremendous energy. We will discuss the overflow condition later.

€ Synthesis Polyphase Filter Bank

In this block, only three equation below may make the overflow happen.

V[il = i Nik * Sk (4.11)
WI[i] = U[i]D[i] (4.12)
Sl :iwn +32i] (4.13)

In Equation (4.11), the analysis step is also similar to IMDCT’s analysis. Nik is
cosine term with dynamic range between -1 and 1. If the worst case occures, V[i] will
overflow and Q15 format will be fail.

In Equatoin (4.12), the coefficient of DJ[i] range from —1.449 to +1.4449. Scaling
by 2 changes its dynamic range into pure fractional. The multiplication of two fractional
number is still in the fractional range, hence Q15 format handle this operation well with
scaling by 2.

In Equation (4.13), the output S[j] has maximum value 32767 and minimum
value —32768 for 16 bits processor. This decoder uses the saturation mechanism to
prevent the overflow during the decoder operation because overflow is seldom
happened except decoding the digital signal with very large energy. If checking
overflow in each operation it may occure, decoder will waste much instruction cycle

since overflow is seldom happened.
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€ Overflow

Figure 4.1 shows the test pattern that will cause overflow operation due to its large
energy. This kind of large energy signals is seldom used in MPEG/Audio coding
because it is a sound that grates on the ear and is not comfortable for hearing. That’s the
reason why most decoders only check the overflow at the output and just perform

saturation if it is overflow.

large energy

4 —
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040

Figure 4.1 Test pattern with large energy and its frequency response.

End of this subsection, we list some statistics of floating-point and fixed-point
operation. Table 2 compares the floating-point C code with the fixed-point assembly
code. As listed in Table 2, fixed-point assembly code provides very great improvement
in speed. Table 3 shows the comparison of memory size. As shown in Table 3, memory

size are greatly reduced.
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Table 2 Fixed-point improvement of instructions per frame

Floating-point

Fixed-point

C code Assembly code Improvement
Descaling 235418.14 95415.11 59.47%
AntiAlias 350568.59 7901.33 97.75%
Freqlnv 35060.00 2128.00 93.93%
IMDCT 2044628.70 111715.95 94.54%
Synthesis 4706888.00 505220 89.27%

Table 3  Fixed-point improvement of program memory (word)

Descaling 827 112 86.46%
AntiAlias 571 39 93.17%
Freqinv 42 25 40.48%
IMDCT 3141 144 95.42%
Synthesis 163 126 22.70%
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4.1.2 An Efficient Algorithm Implementation

Although there are many efficient implementations proposed for MDCT/IMDCT
and analysis/synthesis filter bank computation, these implementations need to unroll the
algorithm and use the memory size to interchange the time [31][32]. This thesis uses
another efficient implementation which is a good compromise between memory and
time. This method also fits the architecture of C54x DSP.

The IMDCT is defined as Equation (4.14) and has the even anti-symmetric
property as Equation (4.15) [33].

n

24
2

x(i)=5" X, cos(%(Zi +1+2)(2k +1)) ,fori=0~n-1 (4.14)
k=0

x(%—i 1) = —x(i) L
0 ,for O0<i<— (4.15)
K(n=i-1) =x(+) 4

This is to say, IMDCT can be realized by calculating x(i) where 0§i<% and

%gk%n only. Additionally, we can reverse the sign of the particular window

coefficients which are performed after IMDCT. Figure 4.1 illustrates the efficient

operation for n=12 (short window).
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Figure 4.2 Efficient IMDCT and windowing operation [33].

In addition, there are some properties of cosine terms in (4.14) between short and

long window as Equation (4.16) shown.

n,. . m 3 n,.. n
085 (o (2] +1+ 2)(2k +1)) = cos, (- (21 +1+2)(2k +1)

forj=0~11 i=3j+1

where:

cos s (x) are the coefficients for short window,

cos | (x) are the coefficients for long window.

(4.16)

Obviously, the coefficients for short window overlap the coefficients for long

window as Figure 4.3 shown. Inserting the coefficients of short window into long

window with specified index addressing also reduces the memory sizes
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Figure 4.3 The overlap of coefficients for short and long windows.

Besides IMDCT, the synthesis filter bank implementation can also be efficient in
two parts. First part is realized in operations that are similar to the efficient IMDCT.
Second part is to skip some operations but still generate the correct outputs. In synthesis

filter bank, matrix operations as Equation (4.17) shown can be seen as an IMDCT

operation.
31

V(i) =D NS, (4.17)
k=0

where:

N, =cos((16 +i)(2k +1) %) , for i=0~63, k=0~31 (4.18)

The coefficients of Nik in Equation (4.17) also have the even anti-symmetric

property so V(i) can be expressed by Equation (4.19).
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N g
VG TU=VE 0<i<?
V(i) =0 L
V(n—i—1)=V(g+i+1) , for Osi<%—1 (4.19)
V(i)=>'s, i =48

This means that matrix operations can be realized by calculating V(i) where

Osi<% and %+1gig%n only. Therefore, this part can save many instruction

cycles.

In the second part, we skip the operation of building a 512 values U vector in
synthesis filter bank operation in Figure 2.20 and replace Equation (4.20) by Equation
(4.21). It implies that we can decrease instuction cycles and memories by skipping

building U vector and using another index method.

15
S, =Y U@+32j)D(i +32]) ,for 0<i<31 (4.20)

i=0

where U is from V vector by Equation (4.22)

15
S, = V(32i+j)D(32i+j) ,for 0<i<3l (4.21)

j=0

U(64i+32+ j) =V (128i +96 + j)

Table 4 and Table 5 show the improvement of time and memory reduction in

IMDCT and synthesis filter bank by using the efficient algorithm.
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Table 4

Efficient algorithm improvement of instructions per frame

Original algorithm Efficient algorithm Improvement
IMDCT 111715.95 71803.64 35.73%
Synthesis 505220 356936 29.35%

Table 5  Efficient algorithm improvement of memory (word)

Original algorithm Efficient algorithm Improvement
IMDCT 763 468 38.7%
Synthesis 2652 1143 56.9%
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Figure 4.4 and Figure 4.5 show the percentage of execution instructions of IMDCT
and synthesis function relative to others without and with the efficient algorithm,
respectively. We can see that IMDCT and synthesis functoin reduce many instruction

cycles.
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Figure 4.4 Execution instructions without the efficient algorithm.
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Figure 4.5 Execution instructions with the efficient algorithm.
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4.1.2 Multi-Task, Multi-Thread Management

The software required in typical embedded microprocessor systems is comprised
of two general components, the application software and the system software.
Application software is what programmers usually implement first, e.g. audio coding or
speech coding algorithms. Under this layer is system software which is responsible for
managing the system resources for application software. System resources include the
hardware devices on the target platform and the microprocessor. Take the MPEG/Audio
Layer 3 decoder as an example, the decoding algorithm is application software and
reading the input stream and playing the output PCM samples are the system software,
as Figure 4.5 shown.

In order to operate correctly in real-time, both of application software and system
software have their own task cycles and must meet their deadlines respectively. For
example, application software has to decode one frame in a limited period while system
software has to read-in bitstream according to the bit-rate of bitstream and send-out
each audio sample in the original sampling period. To realize the mechanism, we

implement the real-time system by multi-task with multiple threads.
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Figure 4.6 Embedded system software components [34].

In simple systems, the system software consists of basic hardware initialization,
peripheral access functions and hardware interrupt service routines. Systems that are
more complex require real-time scheduling of the DSP to ensure correct operation.
Furthermore, as applications require concurrent access to hardware resources such as
the DSP, memory, or I/O, the need for an efficient resource manager and scheduler
becomes paramount. Managing these resources is precisely the benefit of using
DSP/BIOS II. DSP/BIOS 1l provides system services to manage the DSP system
hardware components and to provide applications with services that manage the DSP
utilization.

DSP/BIOS II® is a kernel that provides run-time services which developers use to
build T1 DSP applications and manage application resources. DSP/BIOS 11 effectively

extends the DSP instruction set with real-time, run-time kernel services that form the
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underlying architecture, or infrastructure, of real-time DSP applications. DSP/BIOS

provides many features for program development [35]:

» A program can dynamically create and delete objects that are used in special
situations.

» The threading model provides thread types for a variety of situations. Hardware
interrupts, software interrupts, tasks, idle functions and periodic functions are all
supported.

»  Structures to support communication and synchronization between threads are
provided. These include semaphores, mail boxes and resource locks.

»  Two I/O modules are supported for maximum flexibility and power. Pipes are used
to support simple cases in which one thread writes to the pipe and another reads
from the pipe. Streams are used for more complex I/0 and to support device
drivers.

»  The DSP/BIOS plug-ins allow real-time monitoring of program behavior.

In many DSP applications, the data flow from input to output is often a continuous
flow of data blocks or buffers. The DSP/BIOS Il data pipes (PIP) and data streams (SI10)
modules are well suited to manage streaming data. Streaming data applications require
management of the flow of data buffers throughout the application. DSP/BIOS Il data
pipes and data streams are kernel objects optimally designed to perform these tasks.
Both module transfer buffers within the pipe or stream by copying pointers rather than
by copying data between buffers. In general, the pipe module supports low-level

communication, while the stream module supports high-level, device-independent 1/O.
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Except PIP and SIO modules, DSP/BIOS also provide other modules including
HWI, SWI, TSK, MBX and DEV which will be used with PIP or SIO. HWI (hardware
interrupt module) is executed after a hardware interrupt triggered in order to perform a
critical task that is subject to a deadline. HWIs are the threads with the highest priority
in a DSP/BIOS application. SWI (software interrupt module) is triggered by calling
SWI functions from the program. Software interrupts provide additional priority levels
between hardware interrupts and the background tasks. TSK (multitasking module)
dynamically schedules and preempts tasks based on the task’s priority level and the
task’s current execution state. Lower level threads can be suspended during execution
until necessary resources are available. MBX (mailbox module) is used for inter-task
communication and synchronization. It can pass messages from one task to another.
MBX can also be combined into SWI module to synchronize a software interrupt. DEV
(device driver module) is software module that manages a class of devices. For more
information about these modules, please refer to [34][35].

In the following, we will realize the implementation of PIP and SIO both and

compare the difference between PIP and SI1O.

€ PIP Implementation

To transfer data between the ISR and the application, we use PIP module first. One
data pipe transfers data from the ISR to the application, the other transfers full data to
the ISR for output.

In Figure 4.7, the decode() function attached to the DSP/BIOS Il SWI thread
(echoSwi) performs the audio processing. The audio processing thread activates only

when both a full block of data and an empty block of data are available. To synchronize
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these events, we use the echoSwi’s mailbox. The initial value of the SWI mailbox is set
to 3, which sets the first 2 bits in the SWI mailbox to 1. When both of these bits become
0, the SWI thread activates to perform the process of decoder.

Both data pipes signal the software interrupt using SWI_andn() calls to their
assigned bits in the SWI mailbox to synchronize the process. The input data pipe will
signal the echoSwi when the ISR has a block and it is available for processing by
calling SWI_andn(2) to clear bit 1 in the SWI mailbox. Likewise, the output data pipe
will signal the audioSWI when an empty block of data is available for the application to

fill by calling SWI_andn(2) to clear bit 0 in the SWI mailbox.

0101001 == Memory Data | M Ll [q
Bus | pma
AW
ISR

INPUT
data path

Input Pipe /\\
PIP
PIP. rxPrime

OUTPUT
data path

Decoder function

Output Pipe

i

DIP vPrime

Get)E)ata L | y=decode(x) —» PutyData

SWI thread calls
the audio function
11
audioSwi mailbox
SWi
Audio Processing

Software Interrupt
(echoSwi thread)

synchronization
SWI_andn()

synchronization
SWI_andn()

Figure 4.7 Architecture of multi-task using PIP module [34].
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In Figure 4.8, execution graph, we can see that echoSwi has higher priority and
preempts the other threads. After the echoSwi finishs its thread, other threads restitute to

execute. Once echoSwi is ready, preemption occures again.

ke wsing
e Theeah IS ERE NN 8 D"H:-'
SEM Poety B wrkrom
RO Ticks - T E—— T T S R T — ]
P——— B dore

Figure 4.8 Execution graph of PIP implementation.

€ SIO Implementation

In addition to PIP implementation, we use SIO module which is the other
mechanism to transfer data between the ISR and application. The SIO provides a
high-level device independent I/0O mechanism for use with TSK threads. SIO goes
beyond PIP by offering the ability to create new SIO objects at run-time. To provide
this ability, SIO has its own device driver model, DEV. A small set of device specific
functions, such as open, close, and buffer management, is implemented and accessed by
a SIO object through a function table.

In this implementation, application software is in the echoTsk() task, as Figure 4.8
shown. This task creates one input stream and one output stream at run-time. Task will

be suspended when streams generate software interrupt since SWI has higher priority
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than TSK. Input stream will generate software interrupt when sends data to decoder()

while output stream will generate software interrupt when sends out data from decoder()

function.

0101001 =

INPUT

data path

Er————
[ Tnniit Straam /\

synchronization
SIO_get()

N

McBSP Audio
Memory Data CODEC
S | DMA
HWI
ISR
DEV
/ N OUTPUT
data path
Decoder function
Get Data Put Data
. —> y=decode(x) —> y

TSK
Audio Processing
Task module
(echoTsk)

synchronization
SIO_put()

J

Figure 4.9 Architecture of multi-task using SIO module.

In Figure 4.9, we can see that KNL_swi has higher priority than echoTsk and

preempts it when KNL_swi is ready. TSK_idle will run when echoTsk is finished and

CPU has more execution power.
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Figure 4.10 Execution graph of SIO implementation.

Consequently, DSP/BIOS Il offers two basic constructs for handling data I/O in a
real time system: data streams and data pipes. They differ in their approach to solving
the problem, but they both provide known, solid, deterministic methods of handling data
I/0. Table 6 compares these two modules in more detail. Figure 4.11 and 4.12 shows

the CPU load graph of PIP and SIO mechanism respectively. Note that CPU load of PIP

has lighter load than SIO’s.
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Table 6 Difference between PIP and SIO. [35]

Pipes

Streams

Programmer must create own driver
structure

PIP functions are non-blocking

Uses less memory and is generally faster

Pipes must created statically before
run —time

Easy interface with SW1 and TSK

Ability to have multiple buffers

Designed to be used by only one SWI/ TSK
Can only work on one frame at a time

Frame sizes are fixed

Provides a more structured approach to
device-driver creation

SIO are blocking functions and will wait
until a buffer is available

More flexible; generally simpler to use and
slower.

Streams may be created either at run-time
or statically.

Good level of hardware abstraction
Synchronization mechanism with TSK
Highly flexible

Can service multiple TSK

Can prototype with a different SIO/ DEV
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Figure 4.11 CPU load graph of PIP implementation.
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Figure 4.12 CPU load graph of SIO implementation.
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4.2  Verification

The performance of this decoder is shown in Table 7. For different sampling rate
and bit-rate which means the different compression ratio, the performance varies in

small range. The SNR is defined by Equation 4.23 and Error Bit is derived by Equation

4.24.

SNR[dB] =10x log,, 2. PCM e [ (4.23)
Z(PCM float[i] -PCM fixed [i])2

Error _bit = %Z log, (PCM 64 [i1~ PCM 4., [i]) (4.24)

where we define log,(0)=0. N = 1152.

The MIPS (Million Instruction Per Second) in Table 7 is the required MIPS to decode a

particular bitstream if the DSP is running at 100 MIPS.
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Table 7 SNR, Error_bit ,MIPS of various compression ratio.

o (k)| (g9 | Rato | (vsfoating) | ETOrBIt | MIPS
64 8.0 49.92 3.7 22.83

32 128 4.0 48.38 3.8 28.49
160 3.2 48.62 4.2 30.40

64 11 48.57 3.2 27.94

441 128 55 48.96 3.3 34.16
160 4.4 48.74 3.4 37.02

64 12.0 50.67 3.1 29.57

48 128 6.0 49.15 3.2 35.80
160 4.8 49.02 3.4 38.66

In Figure 4.13, the output PCM waveform generated by fixed-point decoder is
almost the same with the output of floating-point decoder. The errors of fixed-point and

floating-point are very small.
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Figure 4.13 Waveform comparison between floating and fixed-point decoder.

Finally, we conclude with the performance of the most popular format in this
chapter. Decoding the most popular format — 44.1 kHz sampling rate, 128 Khbps bitrate,
compression ratio 5.5:1, gives SNR 48.96 dB, error_bit 3.3 bits and 34.16 MIPS. The
MIPS corresponds to 34.16% of the maximum computation capacity of TMS320C5402

DSP. The program memory and data memory used in the decoder are about 7.1 kwords

and 17.2 kwords, respectively.
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Chapter 5

Conclusion and Future Works

5.1  Conclusion

This thesis describes the MPEG/Audio Layer 3 coding algorithm and presents a
real-time decoder implementation on a fixed-point DSP chip. The MPEG/Audio Layer
3 provides high compression ratio of audio signal with good sound quality. The DSP is
software programmable and offers IDE (Integrated Development Environment) tools
which we can develop and debug the algorithm quickly and easily in the programming
stage.

In implementation portion, using the fixed-point operation increases the execution
speed and reduces the memory size. Coding with assembly language also achieves these
goals. In addition, we adopt several optimum methods and an efficient algorithm to
improve performance. Finally, we realize real-time decoder with the PIP and SIO
module in multi-task and multi-thread framework. The implemented decoder uses 7.1
kwords of program memory and 17.2 kwords of data memory. It consumes about 34%

computation power of C54x DSP chip. This decoder also provides the SNR more than
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45dB while comparing to floating-point decoder and sacrifices about 4-bits resolution

for fixed-point operation.

5.2  Future Works

With the rapid upgrowth of audio compression knowledge, many other audio
compression formats are developed and realized. Dolby AC-3 [36], MPEG-2 Advanced
Audio Coding (AAC) [37], Microsoft® Windows Media™ Audio (WMA) [38] are all
the good audio coding technology compare with MPEG/Audio Layer 3 and booming in
the world of audio coding.

Appling the software programmable characteristic of DSP, we can develop a
multi-format decoder by “switching the decoder”. When accessing particular format,
switching to corresponding decoder makes us decode the file without adding another

hardware like the ASIC do.
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