
國立交通大學

電機與控制工程研究所電機與控制工程研究所電機與控制工程研究所電機與控制工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

MPEG-1 LAYER 3 音訊解碼器於DSP晶片之
即時軟體實現

Real-Time Implementation of MPEG-1 Layer 3 Audio
Decoder on a DSP Chip

 研 究 生：賴鴻志

 指導教授：胡竹生 博士

中華民國 九十 年 六 月

MPEG-1 LAYER 3 音訊解碼器於DSP晶片

之即時軟體實現

REAL-TIME IMPLEMENTATION OF MPEG-1
LAYER 3 AUDIO DECODER ON A DSP CHIP

研 究 生：賴 鴻 志 Student: Hung-Chih Lai

指導教授：胡 竹 生 Advisor: Dr. Jwu-Shen Hu

國立交通大學
電機與控制工程研究所

碩士論文

A Thesis
Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science
National Chiao-Tung University

in Partial Fulfillment of the Requirements
for the Degree of Master

in
Electrical and Control Engineering

June 2001
Hsinchu, Taiwan, Republic of China

中華民國 九十 年 六 月

國立交通大學

研究所碩士班

論文口試委員會審定書

本 校 電 機 與 控 制 工 程 研 究 所 賴 鴻 志 君

所 提 論 文 MPEG-1 LAYER 3 音訊解碼器於 DSP晶片之即時軟體實現
Real-Time Implementation of MPEG-1 Layer 3 Audio Decoder on
a DSP Chip

合於碩士論文資格水準、業經本委員會評審認可。

口試委員：

指導教授：

系主任： 教授

中華民國 九十 年 六 月 十三 日

i

MPEG-1 LAYER 3 音訊解碼器於音訊解碼器於音訊解碼器於音訊解碼器於DSP晶片之晶片之晶片之晶片之

即時軟體實現即時軟體實現即時軟體實現即時軟體實現

研究研究研究研究生生生生：賴鴻志：賴鴻志：賴鴻志：賴鴻志 指導教授：胡指導教授：胡指導教授：胡指導教授：胡 竹竹竹竹 生生生生 博士博士博士博士

國立交通大學電機與控制工程研究所

摘摘摘摘 要要要要

本論文主要針對MPEG-1 Layer 3 音訊編碼標準作研究並在定點 DSP晶片上

實作一即時解碼器。本論文分成兩大部分，第一部分敘述MPEG-1 Layer 3 音訊編

碼標準，包括壓縮與解壓縮。第二部分簡介軟硬體平台並實作出一可即時播放出

音樂的即時解碼器。實作的重點包括組合語言的撰寫、定點數的運算、高效率的

運算法則、多功及多執行序的管理與結果比較。此解碼器程式記憶體共使用 7.1k 字

元(word)，資料記憶體共使用 17.2k字元(word)。若以此定點晶片最快速度 100 MHz

執行，則此解碼器的解碼速度為 34.16 MIPS，約佔此晶片 34%的運算能力。

ii

REAL-TIME IMPLEMENTATION OF MPEG-1
LAYER 3 AUDIO DECODER ON A DSP CHIP

Student: Hung-Chih Lai Advisor: Dr. Jwu-Shen Hu

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

In this thesis, an investigation is done for MPEG-1 Layer 3 audio coding standard.

A real-time implementation on a fixed-point DSP chip is also proposed. This thesis is

twofold: one is to introduce the MPEG-1 Layer 3 audio coding standard, including

encoder and decoder. The other is to describe software and hardware development

environment and implement a real-time decoder. The keys of implementation are

hand-coded in assembly language, fixed-point operation, an efficient algorithm,

multi-task and multi-thread management and verification. The decoder uses 7.1 kwords

of program memory and 17.2 kwords of data memory, respectively. This decoder is

34.16 MIPS and uses about 34% computation power of this DSP chip if it run at its

maximum speed, 100MHz.

iii

誌 謝

感謝我的指導老師胡竹生博士對我的指導，讓我在碩士兩年內能夠獲獎、能

到 TI增廣見聞、能完成一本著作、完成論文並順利畢業。在定點 DSP領域的專業

知識都是從老師身上所學的。另外要感謝鄭木火老師以及林源倍老師撥冗指導與

寶貴的建議，使得本論文的內容更加完備。

感謝實驗室的所有伙伴，余祥華學長、澎哥、胖胖、許誌尤，詹玉麒、廖建

龍等學長，讓我在研一時感受到實驗室的溫暖，對學弟的照顧。學長們的專業能

力更是讓我佩服，也才有機會和學長們一起得到第一屆 TIC100的首獎與 23萬的

獎金。謝謝實驗室的同學：酷酷的小陶子學長、常開車載我們的瓊宏，不太說話

的俊德、和我同居兩年的阿邦以及一起為了論文，為了讓 DSP達到 real-time而奮

鬥的凱。還有實驗室的學弟妹們：劉維瀚、劉欣慈、蘇宗敏、林家銘、鄭价呈，

幫我買便當、簽到、泡咖啡、當值日生。

感謝德州儀器 FAE部門的朋友：讓我學到很多、會請我吃東西、會帶我到客

戶那逛，很看重我的 Jeffrey，還有 Peter, Terence, YT, Paul, Johnny 等，在 TI讓我

學到很多，我的論文也是在那得到靈感的。此外，還有研華及 IPC的朋友們。

謝謝陪伴我六年的手語社，手語社是我課業的避風港兼休息室，每當課業遇

到瓶頸或是有所突破時，第一個想到的就是到社窩走一走。除了課業外，社團幾

乎佔了所有的時間。還要感謝系上許許多多的同學，坤在 mp3方面的幫忙還有會

找我一起打羽球的梁耀文老師、廖德誠老師、鄭木火老師，計概老師蔡中庸老師。

僅以此論文獻給我摯愛的雙親賴秋顯先生和朱桂蘃女士，為我挑起生活的重

擔，使我在求學之路能夠順利，最重要的是您們對我的愛，是我一輩子不會忘記

的。還有大哥常偉、弟弟信仁在家裡對家庭的照顧。最後，謝謝我的女朋友周貞

伶，常常要我帶她出去玩，也時時督促我寫論文，陪我一起度過求學生涯中最困

難、最忙碌卻也是最精彩的部分。

iv

Contents

CHINESE ABSTRACT... i

ENGLISH ABSTRACT ... ii

ACKNOWLEDGEMENTS... iii

CONTENTS... iv

LIST OF TABLES... vi

LIST OF FIGURES .. vii

CHAPTER 1 INTRODUCTION ... 1

1.1 AUDIO SIGNAL COMPRESSING... 1

1.2 DIGITAL SIGNAL PROCESSOR .. 3

1.3 MOTIVATION... 4

1.4 PREFACE.. 5

CHAPTER 2 MPEG/AUDIO LAYER 3 CODING .. 6

2.1 MPEG/AUDIO LAYER 3 ENCODING ALGORITHM ... 7

2.1.1 Analysis Polyphase Filter Bank .. 8

2.1.2 MDCT and Alias Reduction ... 13

2.1.3 Psychoacoustic Model .. 17

2.1.4 Nonuniform Quantization ... 22

2.1.5 Huffman Encoding.. 27

2.1.6 Bitstream Formatting .. 31

2.1 MPEG/AUDIO LAYER 3 DECODING ALGORITHM.. 32

2.2.1 Decoding of Bitstream .. 33

2.2.2 Inverse Quantization ... 36

2.2.3 Frequency to Time Mapping... 37

CHAPTER 3 ENVIRONMENT OF HARDWARE AND SOFTWARE 39

3.1 HARDWARE ENVIRONMENT .. 39

3.2 SOFTWARE ENVIRONMENT.. 42

CHAPTER 4 IMPLEMENTATION AND VERIFICATION............................... 45

4.1 IMPLEMENTATION... 46

v

4.1.1 Fixed-Point Operation... 46

4.1.2 An Efficient Algorithm Implementation... 53

4.1.3 Multi-Task and Multi-Thread Management 59

4.2 VERIFICATION .. 69

CHAPTER 5 CONCLUSION AND FUTURE WORKS...................................... 72

5.1 CONCLUSION.. 72

5.2 FUTURE WORKS... 73

REFERENCE.. R-1

vi

List of Tables

TABLE 1 CHARACTERISTIC OF 32 HUFFMAN TABLES ..30

TABLE 2 FIXED-POINT IMPROVEMENT OF INSTRUCTIONS PER FRAME52

TABLE 3 FIXED-POINT IMPROVEMENT OF MEMORY (WORD) ..52

TABLE 4 EFFICIENT ALGORITHM IMPROVEMENT OF INSTRUCTIONS PER FRAME57

TABLE 5 EFFICIENT ALGORITHM IMPROVEMENT OF MEMORY (WORD)57

TABLE 6 DIFFERENCE BETWEEN PIP AND SIO..67

TABLE 7 SNR, ERROR_BIT ,MIPS OF VARIOUS COMPRESSION RATIO.70

vii

List of Figures

FIG. 2.1 MPEG/AUDIO LAYER 3 ENCODER BLOCK DIAGRAM ...8

FIG. 2.2 H[n], THE PROTOTYPE LOW-PASS FILTER FOR THE POLYPHASE FILTER BANK....................10

FIG. 2.3 FREQUENCY RESPONSE OF POLYPHASE FILTER BANK ..11

FIG. 2.4 PURE SINUSOID INPUT CAN PRODUCE NON-ZERO OUTPUT FOR TWO SUBBANDS..............12

FIG. 2.5 DIAGRAM AND PROCEDURE OF ANALYSIS POLYPHASE FILTER BANK13

FIG. 2.6 ILLUSTRATION OF THE FOUR APPLICABLE WINDOW TYPES ..16

FIG. 2.7 ILLUSTRATION OF ALIAS REDUCTION BUTTERFLIES ...17

FIG. 2.8 THE ABSOLUTE THRESHOLD OF HEARING...19

FIG. 2.9 FREQUENCY MASKING THRESHOLD AND THRESHOLD IN QUIET..20

FIG. 2.10 TEMPORAL MASKING THRESHOLD ..22

FIG. 2.11 MPEG/AUDIO LAYER 3 LOOPS FRAME PROGRAM...24

FIG. 2.12 MPEG/AUDIO LAYER 3 OUTER ITERATION LOOPS..25

FIG. 2.13 MPEG/AUDIO LAYER 3 INNER ITERATION LOOPS...27

FIG. 2.14 MAIN DATA ORGANIZATION..30

FIG. 2.15 AN EXAMPLE OF BIT RESERVOIR..32

FIG. 2.16 MPEG/AUDIO LAYER 3 DECODER BLOCK DIAGRAM ...33

FIG. 2.17 DECODING OF BITSTREAM BLOCK DIAGRAM ...33

FIG. 2.18 MPEG/AUDIO LAYER 3 HEADER FORMAT...34

FIG. 2.19 FREQUENCY TO TIME MAPPING BLOCK DIAGRAM..37

FIG. 2.20 DIAGRAM AND PROCEDURE OF SYNTHESIS POLYPHASE FILTER BANK................................38

FIG. 3.1 DSP STARTER KIT’S FUNCTIONAL BLOCK DIAGRAM..40

FIG. 3.2 ARCHITECTURE OF TMS320C54X DSP ..41

FIG. 3.3 MEMORY MAPS OF C5402 AND EXTERNAL MEMORY ..42

FIG. 3.4 SOFTWARE IDE ENVIRONMENT ..43

FIG. 3.5 SOFTWARE DEVELOPMENT FLOW..44

FIG. 4.1 TEST PATTERN WITH LARGE ENERGY AND ITS FREQUENCY RESPONSE...............................51

FIG. 4.2 EFFICIENT IMDCT AND WINDOWING OPERATION..54

FIG. 4.3 THE OVERLAP OF COEFFICIENTS FOR SHORT AND LONG WINDOWS55

FIG. 4.4 EXECUTION INSTRUCTIONS WITHOUT THE EFFICIENT ALGORITHM......................................58

FIG. 4.5 EXECUTION INSTRUCTIONS WITH THE EFFICIENT ALGORITHM..58

FIG. 4.6 EMBEDDED SYSTEM SOFTWARE COMPONENTS...60

viii

FIG. 4.7 ARCHITECTURE OF MULTI-TASK USING PIP MODULE ..63

FIG. 4.8 EXECUTION GRAPH OF PIP IMPLEMENTATION ...64

FIG. 4.9 ARCHITECTURE OF MULTI-TASK USING SIO MODULE..65

FIG. 4.10 EXECUTION GRAPH OF SIO IMPLEMENTATION...66

FIG. 4.11 CPU LOAD GRAPH OF PIP IMPLEMENTATION ..68

FIG. 4.12 CPU LOAD GRAPH OF SIO IMPLEMENTATION..68

FIG. 4.13 WAVEFORM COMPARISON BETWEEN FLOATING AND FIXED-POINT DECODER..................71

1

C h a p t e r 1

Introduction

1.1 Audio Signal Compression

During the passed ten years, digital audio has essentially replaced analog audio

because the digital audio has many advantages compared to the analog. Digital audio

provides better preservation, cheaper distribution, and invokes various audio processing

easily. The most common format of all the digital audio is the Pulse Code Modulation

(PCM). PCM samples the sound at a fixed rate with fixed bits for the audio signal [1].

Recently, new digital audio applications have been used for network, communication,

broadcasting, multimedia, and computer systems which face constraints such as channel

bandwidth, limited storage capacity and low cost. The audio of CD-quality equivalent

using a standard sampling frequency 44.1 kHz, 16 bits quantization, two channel stereo

requries 1,411,200 bits per second. This means to be able to play an audio PCM format

with CD-quality over a network, we need more than 1.4 Mbit/s in bandwidth. Storing

one song of 4-minutes duration needs over 40 Mbyte disk storage. Therefore, how to

transmit audio signal on Internet with small bitrate or store in hardware with less

2

volume is an important issue. As a result, audio compression technology becomes more

and more precious.

In comparison with the digital video compression and speech compression, the

digital audio is relatively complex. The human ear has a sensitivity over a dynamic

range exceeding 100 dB. In contrast, the vision ability of human visual system are

higher than the resolution of general television or displayer. Compared to speech coding,

there are two disadvantage of audio coding. One is that no source model of the audio

signal is known as the speech coding. The other is the quality of the reproduced audio

signal should be much higher than speech coding.

Due to the urgency of audio compression and complexity it required, several

methods have been purposed to solve this problem. Audio coding methods can separate

into two categories: transform coding and subband coding. Transform coding

algorithms use unitary transforms for the time-to-frequency analysis. These algorithms

typically achieve high resolution spectral estimates with a good compromise of

adequate temporal resolution, like MSC (Multiple adaptive Spectral audio Coding,

Thompson Consumer Electronics) [2], OCF (Optimum Coding in the Frequency domain,

Brandenburg in 1987) [3], PXFM/hybrid (Perceptual transform coder, Johnston in 1988)

[4], CNET (Mahieux in 1989) [5]. Combining elements of above algorithms, ASPEC

(Adaptive Spectral Perceptual Entropy Coding) [6] was included in the ISO/IEC

MPEG-1 audio coding standards. Instead of transform coding, subband coding relies

upon frequency-domain representations of the signal obtained from banks of bandpass

filters. The MUSICAM (Masking pattern adapted Universal Subband Integrated Coding

And Multiplexing) [7] which was also included in ISO/IEC MPEG-1 audio coding

3

stadnard is derived from MASCAM (Masking pattern Adapted Subband Coding And

Multiplexing) which was purposed by IRT [8].

1.2 Digital Signal Processor

The general purpose Digital Signal Processor (DSP) is developed for

implementation of a wide variety of algorithms. Algorithms well suited for DSP

implementation are characterized by multiply-accumulate operations and linear data

access. Most algorithms require a fast, convenient framework for getting large

sequences of data, manipulating them, and restoring them. Farther, many signal

processing algorithms are organizied by multiply-accumulate operations such as

filtering or convolution. Therefore, DSP had been applied in many field like control [9],

consumer [10], military [11], image [12], telecommunications [13] and audio [14].

So far the performance of high level programming language, for example C or C++,

can not keep up assembly language. DSP provides many instructions for implemention

of using assembly language. In addition, DSP supports circular and bit-reversed

addressing. Circular addressing enables the user to set up a group of memory locations

that may be accessed one after the other without any extra test to determine when the

last memory location has been reached. Pointers to the memory locations automatically

wrap around to the beginning of the set once they reach the end. Bit-reversed addressing

caters to the needs of certain signal processing techniques, notably the

decimation-in-time Fast Fourier Transformation or Discrete Cosine Transformation,

effectively streamlining a computationally-intensive algorithm [15].

4

There are two types of DSP according to their operation mode and architecture. A

floating-point DSP is a processor capable of handling floating-point arithmetic where

real operands are represented using exponents. It performs higher performance but

requires higher power consumption and costs. A fixed-point DSP is a processor that

does arithmetic operations using integer arithmetic with no exponents. It uses the

scaling property to replace the exponent part and has to manipulate the location of

decimal point. A fixed-point DSP has powe-efficient performance and low cost.

1.3 Motivation

 The International Standard Organization and the International Electrotechnical

Commission (ISO/IEC) adopted the MPEG-1 algorithm which was developed by the

Motion Picture Experts Group (MPEG) in 1992. The MPEG/Audio is one part of a

multiple part standard that addressed the compression of video part (11172-2), the

compression of audio part (11172-3) [16], and synchronization of the audio, video, and

related data streams, system part (11172-1). The audio part (MPEG/Audio), which is the

first standardize algorithm in audio compression field, had be applied into many way

[17], including

� Internet streaming (Microsoft Media player, Apple Quick time)

� Digital audio broadcasting (Eureka-147 DAB, ARIB, DRM)

� Sound for digital television (DVB, Video CD, HDTV)

� Portable audio devices (mpman, mplayer3, VAIO, Rio, and many more)

5

The MPEG/Audio offers three levels of compression, each with increasing

complexity and better sound quality. The MPEG/Audio Layer 3 (as known as MP3) is

the most complex scheme and provides best sound quality of the three layers. In

MPEG-1 standard, there are many filtering and matrix operations that are well suited for

DSP’s multiply-accumulate characteristic. Since MPEG/Audio Layer 3 is the most

complex layer that provides the best sound quality and DSP is well suited for its most

operations, we intend to realize a MPEG/Audio decoder on DSP chip. In this thesis

focus will be on the MPEG/Audio Layer 3 of the MPEG-1 standard only. Principles and

functionality of MPEG/Audio Layer 3 will be introduced in this thesis and real-time

implementation of decoder with mixed C and assembly language on a single DSP chip

will be presented.

1.4 Preface

This thesis contains five chapters. Chapter 1 is in the premise. Chapter 2

introduces the MPEG-1 Layer 3 standard, including principles and functionality. In

Chapter 3, the hardware and software environment where the decoder is developed are

introduced. Chapter 4 presents the implementation and performance verification. This

thesis finishes with conclusion and future works in Chapter 5.

6

C h a p t e r 2

MPEG/Audio Layer 3 Coding

In this chapter, we describe the basic principles and algorithms in the

MPEG/Audio Layer 3 coding standard. The most important reason why MPEG/Audio

Layer 3 can compress digital audio signals effectively without perceptual loss is to use

the “quantization” and “entropy coding” techniques. Quantization removes the auditory

irrelevant parts of the audio signal without losing the sound quality by exploiting the

perceptual properties of the human auditory system. Removal of such irrelevant parts

results in inaudible distortion. Entropy coding is a lossless coding method that encodes

the quantized data to minimize the entropy of the quantized value of the audio signal

thereby achieving the goal of compression without any quality loss. The two techniques

are also wildly adopted in other compression standard, like image (JPEG) and video

(H.261) compression.

Section 2.1 will introduce the MPEG/Audio Layer 3 encoding standard and its

algorithm. Section 2.2 will explain the decoding process.

7

2.1 MPEG/Audio Layer 3 Encoding Algorithm

In this section the MPEG/Audio Layer 3 encoder will be described with its

functionality. The description of the encoding process is based on the block diagram in

Figure 2.1. The input audio signal which comes from a single channel PCM signal is

passed through a polyphase filter bank. This filter bank divides the input signal into 32

equally-space frequency subbands. After this process, the samples in each subband are

still in the time domain. A Modified Discrete Cosine Transform (MDCT) is then used to

map the samples in each subband to frequency domain. In the meantime, input signal

after FFT transformation passes through a psychoacoustic model that determines the

ratio of the signal energy to the masking threshold for each subband. The distortion

control block uses the signal-to-mask ratios (SMR) from the psychoacoustic model to

decide how to assign the total nomber of code bits available for the quantization of the

subband signals to minimize the audibility of the quantization noise. The quantized

subband samples are coded with the lossless Huffman coding to decrease the entropy of

samples. Finally, the end block takes the Huffman coded subband samples and side

information into a packed bitstream according to the MPEG/Audio standard.

In the following subsections, we will describe the operation and the functionality in

detail for each block in the block diagram.

8

MDCTFilterbank
32 subbands

Psychoacoustic
model

FFT
1024 points

Bitstream
formatting

Distortion
control loop

Non-uniform
quantization
rate control

loop

Huffman
encoding

Coding of
side-information

Digital Audio
signal(PCM)
Digital Audio
signal(PCM)

Coded
audio signal

Coded
audio signal

Window
switching

Window
switching

Figure 2.1 MPEG/Audio Layer 3 encoder block diagram [17].

2.1.1 Analysis Polyphase Filter Bank

The first step in the encoding process is the filtering of the audio signal through a

filter bank. The analysis polyphase filter bank divides the audio signal into 32

equal-width frequency subbands and decimates the subband samples by a factor 32 with

good time resolution and reasonable frequency resolution. Decimation results in an

aggregate number of subband samples that equals the source signal but also introduces

some aliasing [18].

In one frame a sequence of 1152 PCM audio samples are filtered so each subband

contains 36 subband samples. The following equation derives the filter bank outputs:

∑∑
= =

++=
63

0

7

0

])64[*]64[(*]][[][
k j

jkxjkCkiMiSt (2.1)

where:
i is the subband index and ranges from 0 to 31,
St[i] is the filter output sample for subband i at time t, where t is an integer multiple of
32 audio sample intervals,

9

C[n] is one of 512 coefficients of the analysis window defined in the standard,
x[n] is an audio input sample read from a 512 sample buffer, and

]
64

)16()1*2(cos[]][[π−+= kikiM are the analysis matrix coefficients.

Manipulate Equation (2.1) into a intelligible filter convolution Equation (2.2) for

more convenient to analysis.

∑
=

−=
511

0
][*][][

n
nHintxiSt (2.2)

where:
][τx is an audio sample at time τ,

]
64

)16()1*2(cos[*][][π−+= ninhnHi with

h[n]= -C[n], if the integer part of (n/64) is odd,
 = C[n] otherwise, for n=0 to 511.

The coefficients of h[n] are the prototype low-pass filter for the polyphase filter

bank, as Figure 2.2 shown. The modulation of the prototype filter (h[n]) with a cosine

term (M[i][k]) results in filter shifting. Clearly, Hi[n] are the filter banks that shift the

low-pass response to the appropriate frequency band, so these are called “polyphase”

filter bank. These filters have center frequencies at odd multiples of π/(64T) and each

has a bandwidth of π/(32T) where T is the audio sampling period. For example, if

sampling period T is 31.25 ms (32 kHz sampling frequency), the frequency response of

the polyphase filters has center freqeuncy 250 Hz and bandwidth 500 Hz while 2π

presents the sampling freqeuncy, as Figure 2.3 shown.

10

Figure 2.2 H[n], the prototype low-pass filter for the polyphase filter bank.

In Figure 2.3, the overlap of adjacent polyphase filters is inimicable for audio

compression, because alias will be introduced by this overlap and decimation [19].

Signal frequency near nominal subband edges will generate output in two adjacent

polyphase filter. Figure 2.4 shows how a pure sinusoid tone, which has frequency near

subband edge, appears at the output of two polyphase filters. This disadvantage will be

cancelled by using a series of butterfly computations later and appropriate design of

analysis/synthesis filter bank in the encoding/decoding part [20].

11

Figure 2.3 Frequency response of polyphase filter bank.

The samples of the output in each subband are still in the time domain, and will be

processed through a MDCT block which transfers the samples from the time domain to

the frequency domain. Figure 2.5 illustrates the analysis polyphase filter bank and its

detail procedure.

12

0 5 10 15 20 25
-1

0

1

su
bb

an
d

1

0 5 10 15 20 25
-1

0

1

su
bb

an
d

2

0 5 10 15 20 25
-1

0

1

su
bb

an
d

3

0 5 10 15 20 25
-1

0

1

su
bb

an
d

4

output samples

Figure 2.4 Pure sinusoid input can produce non-zero output for two subbands [19].

13

32 samples

0 511

X FIFO

0 511

C Window

0 51163

Z vector

63

0

+ + + + =

63

0

Y vector

630
Mik

31

0
subband
samples

Shift in 32 New Samples
into 512 Point FIFO Buffer

Xi

Window Samples:
for i=0 to 511 do Z=Ci*Xi

Partial Calculation:

for i=0 to 63 do .�

= +=
7

0 64j jiZYi

Calculate 32 Samples by

Matrixing: .�
=

=
63

0
,*

k
kii MYSi

Figure 2.5 Diagram and procedure of analysis polyphase filter bank [16].

2.1.2 MDCT and Alias Reduction

� Modified Discrete Cosine Transformation

In this process the 32 subbands are mapped into a Modified Discrete Cosine

Transform (MDCT) [21] representation. Performing this transformation will enhance

the frequency resolution per subband. Equation (2.3) shows the formula for MDCT

transformation.

))12)(
2

12(
2

cos(
1

0
∑

−

=

+++=
n

k
ki ink

n
zX π , for i = 0 ~

2
n -1 (2.3)

14

Prior to computing the MDCT four window functions are applied to the subband

samples. MPEG/Audio Layer 3 specifies two different MDCT block lengths: a long

block of 18 samples or a short block of 6. The windowing use either long window or

short window depending on the dynamics within each subband. If the subband samples

in a given subband show a stationary behavior, the regular window, long window (Type

0), is used. If the subband samples contain transients, a short window (Type 2) is

applied to subdivide the subband outputs in frequency in order to enhance the time

resolution. The switching mechanism helps to prevent the appearance of pre-echo

phenomenon which will be introduced in next subsection. The other two windows used

to handle the transitions from long-to-short or short-to-long are called start window

(Type 1) and stop window (Type 3). Note that the short block length is one third of a

long block. In short block mode, three short blocks replace a long block so that the

number of MDCT samples for a frame of audio samples is unchanged regradless of the

block size selection. For a given frame of audio samples, the MDCT can all have same

block length (long or short) or have a mixed-block mode. In the mixed block mode the

MDCT uses long window for the two lower frequency subbands and short window for

the 30 upper subbands. This mode provides better frequency resolution for the lower

frequencies without sacrificing time resolution for the higher frequencies.

The window functions are given as following and shown in Figure 2.5.

a) block_type=0 (long window)

))
2
1(

36
sin(+= ixz ii

π , for i = 0 ~ 35 (2.3)

b) block_type=1 (start window)

15














+−

+

=

0

))
2
118(

12
sin(

))
2
1(

36
sin(

ix

x

ix

z
i

i

i

i π

π

 , for i =

35~30
29~24
23~18

17~0

 (2.4)

c) block_type=3 (stop window)














+

+−
=

))
2
1(

36
sin(

))
2
118(

12
sin(

0

ix

x

ix
z

i

i

i

i

π

π

 , for i =

35~18
17~12
11~6
5~0

 (2.5)

d) block_type=2 (short window)

))
2
1(

12
sin(+= ixz ii

π , for i = 0 ~ 11 (2.6)

16

6 12 18 24 30
0

0.2

0.4

0.6

0.8

1

subband sample number

block-type=0

6 12 18 24 30
0

0.2

0.4

0.6

0.8

1
block-type=1

subband sample number

6 12 18 24 30
0

0.2

0.4

0.6

0.8

1
block-type=3

subband sample number
6 12 18 24 30

0

0.2

0.4

0.6

0.8

1

subband sample number

block-type=2

Figure 2.6 Illustration of the four applicable window types.

� Alias Reduction

Before passing the frequency lines a reduction of the aliasing introduced in the

analysis polyphase filter bank is removed. The aliasing is removed at this early stage in

order to reduce the amount of information for transmission. The reduction is obtained

by means of a series of butterfly computations, see Figure 2.7. The csi and cai constants

are tabulated in standard [16]. The butterfly operations with appropriate weighting

cancel the alias caused by the overlap of two adjacent overlapped subbands.

17

(0) (1) (2) (7)．．．

(0) (1) (2) (7)．．．

X0
X1

X17

X18

X557

X558

X575

．
．
．

．
．

．
．

．
．
．

csi

csi

ca
i

cai

(i)

+

+

-
+

1st
sbuband

32th
sbuband

2nd
sbuband

31nd
sbuband

Figure 2.7 Illustration of alias reduction butterflies.

2.1.3 Psychoacoustic Model

It is apparent that while we can hear a very silent sound like a needle falling, and

easily a very loud noise like an airplane taking off, it is impossible to discern the falling

needle if we hear the airplane at the same time. This phenomenon shows that hearing

system adapts dynamic variations in the sound, and some tone we will not hear.

The psychoacoustic model is a pattern that simulates the human sound perceptional

system. The model is used in the encoder only to decide which parts of the audio signal

are acoustically irrelevant and which parts are not, and removing the inaudible parts. It

takes advantage of the inability of human auditory system to hear quantization noise

under conditions of auditory masking. This masking is a perceptual property of the

human auditory system that occurs when the presence of strong audio signal makes a

18

temporal or spectral neighborhood of weaker audio signals imperceptible. The results of

the psychoacoustic model are utilized in the MDCT block and in the nonuniform

quantization block.

Auditory masking consists of three masking principles, which being described

below:

� Absolute Threshold of Hearing

The absolute threshold of hearing is characterized by the minimum amount of

energy needed in a pure tone such that it can be detected by a listener in a quiet

environment. If we measure the energy of a number of tone frequencies, the relation

curve can be plotted on a graph like Figure 2.8 [22]. Since the listener has no a prior

knowledge regarding actual playback levels, the energy values, sound pressure level

(SPL) are expressed in terms of decibels (dB), with the value of 0 dB assigned to the

weakest energy in +/- 1 bit that can be heard. In this figure, tones in the neighborhood of

3,000 Hz require least intensity to be heard. As a result, their threshold is expressed as 0

dB and all other values are expressed relatvie to this value. The absolute threshold of

hearing is also called the threshold in quiet. This absolute threshold of hearing varies

with frequency and covers a dynamic range of more than 60 dB, as shown in this figure.

19

102 103 104
-10

0

10

20

30

40

50

60

70

80

90

100

Frequency (Hz)

S
ou

nd
 P

re
ss

ur
e

Le
ve

l,
S

P
L(

dB
)

Figure 2.8 The absolute threshold of hearing.

� Frequency Masking

Frequency masking, also called simultaneous masking, is a frequency domain

phenomenon where a low-level signal (the maskee) can be made inaudible by a

simultaneously occurring stronger signal (the masker) as long as masker and maskee are

close enough to each other in frequency. A frequency masking threshold can be

measured below which any signal will not be audible. The masking threshold depends

on the sound pressure level and the frequency of the masker. Take an example of the

masking threshold for the SPL = 80 dB narrowband masker in Figure 2.9: the masker is

the signal S0, and any signal’s energy under the border of this masking threshold will be

20

masked by the presence of S0. The weaker signals S1 and S2 are completely inaudible.

This is because their individual sound pressure levels are totally below the masking

threshold. The signal SL is only partially masked and the perceivable portion of the

signal is above the masking curve. Thus, it is possible to increase the quantization noise

in the subband containing the signal SL up the level AB, which means that fewer bits are

needed to represent the signal in this subband.

Without any masker, a signal is also inaudible if its sound pressure level is belw

the absolute threshold. The psychoacoustic model supplies the nonuniform quantization

block with information about how to quantize the frequency lines. The quantization of

the frequency lines is adapted to the limitations of the human ears perception.

Figure 2.9 Frequency masking threshold and threshold in quiet [23].

21

� Temporal Masking

In addition to simultaneous masking in frequency domain, the temporal masking,

also called nonsimultaneous masking, plays an important role in human auditory

perception in time domain. It may occur when two sounds appear within a small interval

of time. The stronger sound may mask the weaker one, even if the maskee precedes the

masker.

Two temporal masking effects occur before and after a strong sound. If a sound is

masked after a louder sound it's called post-masking, and if it's masked ahead in time it's

called pre-masking, as Figure 2.10 shown. Signal in the dark areas will be masked. Note

that in Figure 2.10, post-masking uses a different time lasted longer than pre-masking.

Post-masking continues more than 160 ms after the masker while pre-masking only acts

20 ms befor the masker.

Pre-masking can help to mask the appearance of pre-echoes. Consider the case

where a silent period is followed by a percussive sound, such an transient sound cause

large instantaneous quantization errors. These pre-echoes can become distinctly audible,

especially at low bit rates. The effect of pre-echoes can be mitigated by the time domain

effect of pre-masking if the time spread is of short duration. Take an example of 44.1

kHz sampling rate, the most common used, 1152 samples stand for about 26.1 ms. The

duration of pre-masking effect is about 20 ms. Quantization errors of the 1152 samples

spread in time over the pre-masking can mask and become audible. If we use smaller

transformation block, the quantization errors can be limited in a smaller time duration.

Using short MDCT block transformation, which is 3 times shorter than long block, the

22

quantization errors will spread in 8.7 ms. Obviously, the duration is less than the time of

pre-masking appearance and pre-masking effect will mask the quantization errors.

Since the post-masking effect extends over 160 ms, even in long window case, the

quantization errors of a transient sound will not be heard. Both pre-masking and

post-masking are being exploited in the MPEG/Audio Layer 3 encoding algorithm.

Figure 2.10 Temporal masking threshold [23].

2.1.4 Nonuniform Quantization

The nonuniform quantization block which received the frequency line from the

MDCT block and window switching, masking informations from the psychoacoustic

model, performs the important key techniques “quantization” and “Huffman coding”.

This block outputs the coded data satisfied human auditory system and their correlative

side information.

The nonuniform quantization loop is the most time consuming part of

MPEG/Audio Layer 3 encoding algorithm. It depends on the variation of audio signal

23

and does not have a fixed execution time. The more party-colored the signal is, the more

encoding time it needs. The description of the Layer 3 loop module is subdivided into

three levels. The top level is called “loops frame program”. The loops frame program

calls a subroutine named “outer iteration loop” which calls the subroutine “inner

iteration loop”. For each level a corresponding flowchart is shown below.

The loop module, as Figure 2.11 shown, quantizes an input data vector of spectral

lines in an iterative process according to several demands. The inner loop quantizes the

input data and increases the quantizer step size until the output data can be coded with

the available amount of bit. After completion of the inner loop, an outer loop checks the

distortion of each scalefactor band and, if the allowed distortion is exceeded, amplifies

the scalefactor and calls the inner loop again.

BEGIN

Calculation of available bit

Reset of iteration variable

Outer Iteration Loop

Calculate the number of unused bit

RETURN

all spectral values zero ?y
n

Figure 2.11 MPEG/Audio Layer 3 loops frame program [16].

24

� Outer Iteration Loop (distortion control loop)

The outer iteration loop controls the quantization noise which is produced by the

quantization of the frequency domain lines within the inner iteration loop. The

coloration of the noise is done by multiplication of the lines within scalefactor bands

with the actual scalefactors befor doing the quantization. If the quantization noise is

found to exceed the masking threshold, the scalefactor for this band is adjusted to

reduce the quantization noise. The outer loop is executed until the actual noise is below

the masking threshold for every scalefactor band. Figure 2.12 shows the flowchart of

outer loop.

25

BEGIN

Inner Iteration Loop

Calculate the distortion for each crit ical band

Restore scaling factors

RETURN

Save scaling factors of the critical bands

Preemphasis

Amplify critical bands with more than the
allowed distortion

All critical bands amplified?

Amplification of all bands below upper limit?

At least one band with more than the allowed
distortion?

y

y

y
n

n

n

Figure 2.12 MPEG/Audio Layer 3 outer iteration loops [16].

� Inner Iteration Loop(rate control loop)

The inner iteration loop does the actual quantization of the frequency domain data

and prepares the formatting operation. The Huffman code tables assign shorter code

words to smaller quantized values. If the number of total bits of resulting from the

Huffman coding operatoin exceeds the number of bits available to code one frame, this

26

can be corrected by adjusting the global gain to result in a larger quantization step size,

leading to smaller quantized value. This operation is repeated with different

quantization step sizes until the resulting number of bits demand for Huffman coding is

small enough. Figure 2.13 shows the detail flowchart of the inner loop.

Except scaling, quantization and Huffman coding operation, the Huffman table

selection, subdivision of the big_value range of subregions and the selection of the

quantizer step which will be introduced in the next subsection also take place here.

27

BEGIN

Quantization

maximum of all quantized values
within table range?

Calculate runlength of zeros at the upper
end of the spectrum

Calculate runlength of values less or equal
one at the upper end of the spectrum

Bit count for the coding of the values less or
equal one on the upper end of the spectrum

Divide the rest of the spectral values into 3
subregions

Choose code table for each subregion

Bit count for each sub region

Overall bit sum less than available bit

increase quantizer
step size

increase quantizer
step size

RETURN

y

y
n

n

Figure 2.13 MPEG/Audio Layer 3 inner iteration loops [16].

2.1.5 Huffman Encoding

In this block an entropy coding of the quantized frequency lines is performed using

the Huffman coding algorithm based on 32 static Huffman tables. The Huffman coding

28

provides lossless compression and thereby reduces the amount of data to be transmitted

without the quality loss.

The most popular technique for removing coding redundancy is Huffman coding.

In Huffman coding the entropy is based on a statistic distribution of the group of data

values. From the data statistics a substitution table covering all data values is

established. In this table, values with a high probability of being present in the data are

associated with short code words and data rarely present are associated with longer code

words. Thereby, the Huffman coding is a variable-length coding (VLC).

MPEG/Audio Layer 3 delimits the frequency lines into three sections and adopts

an ESCAPE value in one of the three section in the coding process for two reason:

1.The order is by increasing frequency except for the short MDCT block mode. For

short block there are three sets of window values in a subband so the ordering is by

frequency, then by window, then by scalefactor. Ordering is advantageous because large

values tend to be at the lower frequencies and long runs of zero or near-zero values tend

to be at the higher frequencies.

2.When a large number of symbols is to be coded, the construction of the optimal

binary Huffman code table is a nontrivial task.

With the benefit for the first reason, the encoder delimits the ordered frequency

lines into three distinct regions. This enables the encoder to code each region with a

different set of Huffman tables specifically tuned for the statistics of that region. Three

region are called “rzero”, “count1_region” and “big_value region”.

Starting at the higher frequency, the encoder identifies the continuous run of

all-zero values as one region, “rzero”. This region does not have to be coded because its

29

size can be deduced from size of the other two regions. However, it must contain an

even number of zeroes because the other regions code their values in even numbered

groupings.

A second region, “count1_region”, comprises of a continuous run of values

consisting only of -1, 0, or 1. Two Huffman tables for this region code 4 values at a time

so the number of values in this region must be a multiple of 4.

Finally, a third region covers all the remaining values, called “big_values region”.

The 30 Huffman tables for this region code the values in pairs. This region is further

subdivided into three subregions that each has its own specific Huffman table. In the

“big_values region”, due to the disadvantage of the second reason in page 28, an

“ESCAPE” value is introduced in order to improve the coding efficiency before coding

the frequency lines. In this region, values exceeding 15 are repreesented with the

number 15 and the remainder is the ESCAPE value. Depending on the size of the

ESCAPE value a number of bits, called linbits, is assigned to represent the ESCAPE

value, see the following Equation (2.7).

ESCAPE value = quantized value -15, if quantized value > 15 (2.7)

linbits = word length(ESCAPE value)

Figure 2.14 shows the relation of three Huffman coded region and scalefactor.

Table 1 lists the characteristic of the 32 Huffman tables of MPEG/Audio Layer 3

standard.

30

Huffman codescalefactor

part2_length part3_length

region 1region 0

big_value count 1

part2_3_length

xxx-----------------000000000000

rzero

576

region 2

Figure 2.14 Main data organization.

Table 1 Characteristic of 32 Huffman tables.

Table
index

Max.
value

Table
index

Max.
value

linbits Max.
value *

Region
used

A 1 B 1 No count_1
0 0 16 15 1 16
1 1 17 15 2 19
2 2 18 15 3 23
3 2 19 15 4 31
4 not used 20 15 6 79
5 3 21 15 8 271
6 3 22 15 10 1039
7 5 23 15 13 8207
8 5 24 15 4 31
9 5 25 15 5 47

10 7 26 15 6 79
11 7 27 15 7 143
12 7 28 15 8 271
13 15 29 15 9 527
14 not used 30 15 11 2016
15 15 31 15 13 8207

Big
value

* means the addition of maximum vaule and ESCAPE value

31

2.1.6 Bitstream Formatting

The last block of encoding process is to produce a MPEG/Audio Layer 3 compliant

bitstream. The Huffman coded frequency lines, the side information and a frame header

are assembled to form the bitstream. The bitstream is partitioned into frames each

represents 1152 audio samples. The header describes which bit rate and sampling

frequency that is being used for the encoded audio. The side information tells what

block type, Huffman tables, subband gain and subband factors are being selected.

� Bit Reservoir

In this block, an enhancement method called “bit reservoir” is used to fit the

encoder’s time-varying demand on code bits. The encoder can donate bits to a reservoir

when it needs less than the average number of bits to code a frame. Next, when the

encoder needs more than the average number of bits to code a frame, it can borrow bits

from the reservoir mechanism. The encoder can only borrow bits donated from past

frames; it cannot borrow from future frames. The MPEG/Audio Layer 3 bitstream uses

a 9-bit pointer, called main_data_begin, in each frame's side information to point out the

location of starting byte of audio data for that frame. An example of how the main data

can be distributed is illustrated in Figure 2.15.

32

reservoir main_data 1

main_data 2

main_data 3

header
frame1

header
frame2

header
frame3

sy
nc

.
si

de
_i

nf
o

1

sy
nc

.
si

de
_i

nf
o

2

sy
nc

.
si

de
_i

nf
o

3

main_data_begin 1
main_data_begin 2

main_data_begin 3

reservoir

Figure 2.15 An example of bit reservior [16].

2.2 MPEG/Audio Layer 3 Decoding Algorithm

In this section the MPEG/Audio Layer 3 decoder will be described with its

functionality. The decoding process is based on the block diagram in Figure 2.16. The

decoder has three main parts: “Decoding of Bitstream”, “Inverse Quantization”, and

“Frequency to Time mapping”.

The input coded bitstream is passed through the first parts to synchronize and

extract the quantized frequency line and other information of each frame. The inverse

quantization part dequantizes the frequency line according to the output of previous part.

Finally, the last part is a set of reverse operations of the MDCT and analysis polyphase

filter bank in the encoder. Its output is the audio signal in PCM format.

33

In the following subsections, we will describe the opeation and the functionality

for each block in Figure 2.16.

Decoding of
Bitstream

Decoding of
Bitstream Inverse

Quantization

Inverse
Quantization Frequency to

Time mapping

Frequency to
Time mapping

Coded
bitstream

in

Audio
 PCM out

Figure 2.16 MPEG/Audio Layer 3 decoder block diagram.

2.2.1 Decoding of Bitstream

This decoding part effects to synchronize and extract the quantized frequency lines

and other information of each frame. Of course, it needs to synchronize where a frame

begins and where the data resides. The block diagram of this part is shown in Figure

2.17 and will be discussed as following.

Huffman
Decoding

Huffman
Decoding

Huffman Info
Decoding

Huffman Info
Decoding

Scalefactor
Decoding

Scalefactor
Decoding

Bitstream
in

Scalefactor
Information

Magnitude & sign

Synchronization
Synchronization Huffman

Information

Huffman
code bits

Ancillary
Data

Sc
al

ef
ac

to
rs

Figure 2.17 Decoding of bitstream block diagram [24].

34

� Synchronization

The purpose of this block is to receive the incoming bitstream, identify the

contents of the bitstream and pass the information onto the succeeding blocks in the

decoder.

a) The Format of the Bitstream:

The contents of a MPEG/Audio bitstream is organized into frames, each contains

information to reconstruct the audio PCM samples. A frame consists of four parts:

header, side information, main data, and ancillary data.

b) Header:

The header part of the frame contains a synchronization word and system

information. To be able to detect the beginning of a new frame, each frame starts with a

12 bit synchronization word. The rest of the header describes the type of frame, that is

which layer is used in the frame, which bitrate is used for transmission, the sampling

frequency of original digital audio signal, whether the audio signal is single channel or

dual channel, and other additional informations. Figure 2.18 shows the MPEG/Audio

Layer 3 header format.

1 1 1 1 1 1 1 11 1 1 1

error
protection

ID samplings
prequency

private
bit

mode
extension

original
copy

layer
bitrate
index

padding
bit mode

copyright
emphasis

synchronization word

Figure 2.18 MPEG/Audio Layer 3 header format [24].

35

c) Side Information:

The side information sectoin in the frame contains the necessary information to

decode the main data. The side information contains information concerning which

Huffman tables to use during the Huffman decoding process, and information of

scalefactors. The side information section also contains information about where the

main data begins due to the "bit reservoir" technique described in previous section 2.1.6.

d) Main Data:

The main data section contains the coded scalefactor value and the Huffman coded

data. See Figure 2.14 in section 2.1.5.

e) Ancillary Data:

It is possible to include an ancillary data section in each frame. The format of this

ancillary data is user defined and can be used for, e.g. the title, the artist and the album

of the song. The ancillary data is placed between the end of the main data bits in one

frame and the start of the main data bits in the next frame.

� Huffman Decoding

In this block the decoding of the Huffman code bits is performed. Since the

Huffman coding is a VLC method, a single code word in the middle of the Huffman

code bits cannot be identified without starting to decode from a point in the Huffman

code bits known to be the start of a code word [24].

� Huffman Info Decoding

The Huffman Info Decoding block serves to setup all the parameters necessary for

the Huffman decoding block to perform a correct Huffman decoding. The first task to

36

perform is to collect data in the side information which describs the characteristics of

the Huffman code bits. This includes where to find the Huffman code bits in the

bitstream, to decide which Huffman tables are used in each region and whether

ESCAPE values are present in the Huffman code bits. Moreover, this block must make

sure that all frequency lines are generated regardless of how many frequency lines are

described in the Huffman code bits. When fewer than 576 frequency lines appear, the

Huffman Info Decoding block must perform a zero padding to fill the lack of data.

� Scalefactor Decoding

The purpose of the scalefactor decoding block is to decode the coded scalefactors,

i.e. the first part of the main data. Input to this block is scalefactor information and

coded scalefactors. The output of the block is the decoded scalefactors, to be used in the

next inverse quantization block.

2.2.2 Inverse Quantization

The purpose of this block is to reestablish a perceptually identical data of the

frequency lines generated by the MDCT block in the encoder. The descaling is based on

the scaled quantized frequency lines reconstructed from the Huffman decoding block

and the scalefactor reconstructed in scalefactor decoding block. The descaling

calculation of the frequency lines is shown in Equation (2.8).

])[*][*(_

])[8210_(
4
1

3
4

2
2])[(])[(][iptpreflagisfmultiplierscalefac

isbggainglobal

iisabsiissignixr +

−−

••= (2.8)

where:
is[i] is the frequency line reconstructed by Huffman decoder,

37

global_gain, sbg[i], scalefac_multiplier, sf[i],preflag,pt[i] are from scalefactor decoding.

2.2.3 Frequency to Time Mapping

This decoding part performs to reproduce the audio signal from the dequantized

frequency line. This part contains several sub-blocks as Figure 2.19 shown and will be

described in the following.

Alias
Reduction

Alias
Reduction Inverse

MDCT

Inverse
MDCT Frequency

Inversion

Frequency
Inversion

PCM
output

Synthesis
Polyphase
Filter Bank

Synthesis
Polyphase
Filter Bank

Figure 2.19 Frequency to time mapping [24].

� Alias Reduction

In the MDCT block within the encoder it was described that an alias reductoin was

applied. In order to obtain a correct reconstruction of the analysis polyphase filter bank

in the algorithms to come back, the aliasing artifacts must be added to the decoding

process again.

� Inverse MDCT

The frequency lines from the alias reduction block are processing through IMDCT

block. The analytical expression of the IMDCT is shown in Equation (2.9)

))12)(
2

12(
2

cos(
1

2

0
∑

−

=

+++=

n

k
ki kni

n
Xx π , for i = 0 ~ n-1 (2.9)

where:

38

X k is the frequency line,
n is 12 for show window, and 36 for long window.

� Frequency Inversion

In order to compensate the decimation used in the analysis polyphase filter bank,

every odd time sample of every odd subband is multiplied with -1.

� Synthesis Polyphase Filter Bank

Each time 32 samples, from each of the 32 subbands, are applied to the synthesis

polyphase filter bank and 32 consecutive audio samples are calculated. Figure 2.20

illustrates the algorithm and procedure of synthesis polyphase filter bank.

0

Nik
31

0subband
samples

63

U vector

D window

W vector

31

0

+ + + + =

31

0

Input 32 New Subband Samples
S i i=0.....31

Shifting:

for i=0 to 511 do V(i)=V(i-64)

Matrixing:

for i=0 to 511 do W=Ui*Di

Matrixing:

for i=0 to 63: .

Build a 512 values vector U

Calculation 32 samples:

for i=0 to 31 do .�

= +=
15

0 32i ijWSj

�

=
=

31

0
*

k kSikNVi

V vector

Figure 2.20 Diagram and procedure of synthesis polyphase filter bank.

39

C h a p t e r 3

Environment of Hardware and Software

In this chapter, we describe the hardware and software environment briefly. The

hardware is concerned with the development of programs while the software influences

the development speed and enhancement.

3.1 Hardware Environment

The hardware used in this thesis is Texas Instruments™ TMS320C5402 DSK

(DSP Starter Kit). DSK5402 provides a low-cost, standalone C54x development

platform that enables users to evaluate and develop applications for the C54x DSP. It

also provides the DSK schematics that is useful for someone who wants to design the

DSP embedded system. DSK5402 contains many components and interfaces including:

� 100 MHz VC5402 DSP

� 64 K SRAM and 256 K FLASH

� 2 AIC (Analog Interface Circuit)

� DAA (Data Access Arrangement) ,the telephone interface

� Microphone and speaker

40

� RS-232 UART interface

� Parallel and JTAG interface for debug

Figure 3.1 shows the hardware block diagram of DSK5402. For more information

about DSK5402, please refer to [25].

RS232
DRIVER

UART
(I/O)

64k*16
(PM/DM)

256k*16
(PM/DM)

CPLD

MEMORY EXPANSION I/F

EMIF

5402

TLC320
AD50

TLC320
AD50

DAA

JTAG

TBC

Parallel

Port
Controller

Mux

LED

PERIPHERAL EXPANSION I/F

Mux

SWITCH

8-POS DIP SW

PC/
TERMINAL

TEL
LINE

SPEAKER

MICROPHONE

POWER LED

5.0 VDC
SUPPLY

HOST
PC

DB-9P

RJ-11

DB-
25P

Figure 3.1 DSP Starter Kit’s functional block diagram [25].

The kernel of DSK is Texas Instruments™ TMS320VC5402 DSP chip [26]. This

chip is a 16 bits, fixed-point DSP with specific hardware logic, on-chip memory,

on-chip peripherals, and a highly specialized instruction set. All operations are executed

on this chip, includeing the bitstream access, conditional control, vector, matrix and

filter operations. Figure 3.2 shows the architecture of C54x DSP.

41

Figure 3.2 Architecture of TMS320C54x DSP [26].

In general, C54x DSP have a total memory space of 192K 16-bit words. This space

is divided into three specific memory segments: 64K words of program, 64K words of

data, and 64K words of I/O. The parallel structure of the C54x architecture and the

dual-access capability of the on-chip DRAM allow the C54x four concurrent memory

operations. There are several advantages of operating from on-chip memory:

� Higher performance because no wait states are required.

� Lower cost than external memory.

� Lower power than external memory.

The main advantage of operating from off-chip memory is the ability to access a

large memory space. Since this hardware is a DSK board, its program and data use the

same 64K memory without separating program and data memory. Figure 3.3 shows the

memory maps for the C5402 DSP and DSK’s external memory.

42

Reserved

On-chip DRAM

External SRAM
1 Wait -state

Interrupts
(external)

Memory Mapped
Registers

Scratch-Pad RAM

On-chip DARAM
(16K x 16-bits)

External SRAM
1 Wait -state

Hex
0000

007F
0080

3FFF
4000

FF7F
FF80

FFFF

Hex
0000

007F
0080

3FFF
4000

005F
0060

FFFF

Program Data

Figure 3.3 Memory maps of C5402 and external memory [26].

3.2 Software Environment

The DSP software offers Integrated Development Environment (IDE) tools, called

Code Composer Studio® which user can develop quickly and debug easily in

programming stage. Figure 3.4 shows the IDE software environment. This software

development support enables user to develop DSP applications that can be loaded and

executed on the C54x DSK. DSP applications can easily be developed with the use of

high-level DSP board control and on-board peripheral interface functions. This DSP

43

support package allows users to quickly develop DSP applications for evaluation of the

DSK or the application.

The DSP source code debugging support consists of a debugger driver compatible

with TI’s Code Composer debugger. DSP source code debugging support enables us to

load, execute, and test DSP applications in their native C or assembly language source

code formats. The debugging environment gives visibility into the operation of DSP

applications by:

� Supporting execution control with single-stepping and breakpoint capabilities.

� Enabling code to be profiled for performance monitoring.

For more information of source code debugging, please refer to [27][28].

Figure 3.4 Software IDE environment.

44

Figure 3.5 shows a software development flow used in this thesis. Through three

stages: C complier, Assembler and Linker, it generates the executable COFF (Common

Object File Format) file.

C
source

file

C complier

Assembler

Assembler
source

Assembler
source

COFF
object
files

Linker

Executable
COFF

file

Run-time
support
library

Linker
command

file

Figure 3.5 Software development flow [27].

45

C h a p t e r 4

Implementation and Verification

MPEG/Audio Layer 3 decoder had been accomplished based on Win32 or

Unix-like OS several years ago. But there is a few decoder based on single chip like

DSPs or FPGAs. For example, there are shareware WinAmp® and Winplay® for

Win32 system and freeware FreeAmp® for Linux. But we can’t find any decoder based

on DSPs except from commerce, especially for fix-point DSPs. Since the PC or

workstation has enough large memory and fast execution speed, the programmer need

to concentrate on the algorithm only. Referencing the standard C code can implement

such decoder straightly and easily. In other way, implementation on DSP chips not only

has to using the not-user-friendly assembly language but also has to coding in

consideration of memory and speed.

Section 4.1 describe the different of implementation between PC and DSP,

including handling the fixed-point operation, an efficient algorithm of IMDCT and

synthesis polyphase filter bank, and multi-task, multi-thread management. Section 4.2

exhibits the performance of this fixed-point DSP based decoder.

46

4.1 Implementation

4.1.1 Fixed-Point Operation

Although this fixed-point DSP can support floating-point operations as well, it

calls for more instructions cycles and memories. Accommodate to the architecture of

this fixed-point DSP chip, all mathematics are handled by fixed-point operation in the

decoder. Fixed-point operations have to consider the dynamic range of all mathematics,

scaling operation and overflow situation. This subsection will discuss those

consideration block by block in detail.

� Synchronization and Side Information Decoding

The two blocks just synchronize each frame and get the information which is in the

integer range. We do not discuss their fixed-point operation since synchronization and

side information decoding contain only logical operation and integer mathematics.

There are no any scaling operation and overflow situation.

� Scalefactor and Huffman Decoding

Scalefactor decoding extracts the scalefactor used for the inverse quantization. Its

dynamic range is 0 to 15 which expressed by one to four bits.

Refer to Table 1, Huffman decoding operation decodes the encoded quantized

value and the maximum value is 8207. The dynamic range of Huffman decoding value

influences the inverse quantization block. These two block use integer operations

without any overflow condition.

47

� Inverse Quantization

Except normal mathematics of addition and multiplication, the decoder algorithm

also contains logarithmic and exponential operations, e.g. the inverse quantization. The

inverse quantization equatoin, Equation (2.8), can be manipulate into a familiar

equation:

exp3/4 2**])[(][isiissigniXr = (4.1)

where –88.5 ≦ exp ≦ 11.5, 0 ≦ is[i] ≦ 8207

Since the characteristic of audio signal and encoder, exp and is[i] will manipulate

in good relative value. The dynamic range of Xr will be |Xr| < 1. we can realize this

equation on fixed-point operation by using logarithm and exponentiation. First, take the

logarithmic operation on Equation (4.1) and derive Equation (4.2).

)2ln(exp*])[ln(
3
4)][ln(][+== iisiXriY (4.2)

Now the problem is how to calculate ln(is) and compute the final result Xr[i] from

Y[i]. The logarithm of Taylor expansion can be written as Equation (4.3).

n
xxxx

n

−−−−−=−
32

1)1ln(
32

 (4.3)

where -1 ≦ x < 1.

Since is[i] is an integer, it should be scaled to an appropriate range as Equation (4.4)

and (4.5) before using the Taylor’s equation.

is = C(1-x) (4.4)

where C = 2N.

48

ln(is[i]) = ln(C) + ln(1-x) = N*ln(2) + ln(1-x) (4.5)

Experimental results show that for n=11 in Equation (4.3), a good audio

decompression can be achieved [29]. The maximum value of is[i] is 8207, so the

dynamic range of ln(is) will be |ln(is)| < 16 , and Q11 format is sufficient for this

operation.

After getting Y from the logarithmic operation, we calculate Xr[i] from Y[i] by

performing exponential operations. The exponentiation can be written as Taylor

expansion as Equation (4.6).

!
......

!3!2
1

32

n
xxxxe

n
x +++++= (4.6)

where -∞ < x < ∞

The Y[i] given by logarithmic calculatoin is in Q11 format. Therefore, the MSB5

bits are integer and LSB11 bits are fractional part. It is convenient to rewrite the

equation as

xlkiY eeeiXr *][][== (4.7)

Now look into the fraction part, if x is smaller than 0.5, the Taylor equation

converges quickly. If it is larger than 0.5, it converges very slowly. Therefore, if x is

larger than 0.5, Equation (4.7) should be rewritten as

11][**][−+=== xlkxlkiY eeeeeiXr (4.8)

After expansion, we can implement the above equations easily by using the “poly”

instruction which is supported by C54x DSP. This instruction is useful for polynominal

evaluation to implement computations that take one cycle per monomial to execute.

49

Finally, we get the Xr[i] in Q15 format which means the dynamic range of Xr[i] is

|Xr[i]| <1.

 Due to the mixed integer and fraction numbers in original algorithm, we usually

have to scale the number in appropriate scaling for fixed-point operation. The

fixed-point operation is a common acquaintance, so we will not discuss the detail

scaling operations between integer and fraction mode in this thesis. For more

information about fixed-point operation, please refer to [26] [30]. In this block, we

totally use the Q0 (integer), Q15 (fraction), and Q11(mixed integer-fraction) formats.

� IMDCT

The IMDCT Equation (2.9) can be viewed as a convolution of two vectors.

Manipulate the IMDCT operation into a familiar Equation (4.9) for long window case.

∑
=

=
17

0k
i XkYkix , for i = 0 ~ 35 (4.9)

where))12)(192(
72

cos(++= kiYki π

The dynamic range of xi can derive from Equation (4.10)

XkYkiYkiXkXkYkix
kkk

i max*
1717

0

17

0
∑∑∑ ≤≤=

==

 (4.10)

Since the dynamic range of Xk and Yki are 0< |Xk|, |Yki| < 1 , the maximum value of xi

is ∑
17

k
Yki . From the standard, the maximum value of xi is smaller than 12. If the worst

case occures, xi will overflow and Q15 format will be fail. We assume that in general

50

case, digital audio will not cause the overflow since the general digital audio does not

have tremendous energy. We will discuss the overflow condition later.

� Synthesis Polyphase Filter Bank

In this block, only three equation below may make the overflow happen.

∑
=

=
31

0
*][

k
SkNikiV (4.11)

][][][iDiUiW = (4.12)

∑
=

+=
15

0
]32[][

i
ijWjS (4.13)

In Equation (4.11), the analysis step is also similar to IMDCT’s analysis. Nik is

cosine term with dynamic range between –1 and 1. If the worst case occures, V[i] will

overflow and Q15 format will be fail.

 In Equatoin (4.12), the coefficient of D[i] range from –1.449 to +1.4449. Scaling

by 2 changes its dynamic range into pure fractional. The multiplication of two fractional

number is still in the fractional range, hence Q15 format handle this operation well with

scaling by 2.

 In Equation (4.13), the output S[j] has maximum value 32767 and minimum

value –32768 for 16 bits processor. This decoder uses the saturation mechanism to

prevent the overflow during the decoder operation because overflow is seldom

happened except decoding the digital signal with very large energy. If checking

overflow in each operation it may occure, decoder will waste much instruction cycle

since overflow is seldom happened.

51

� Overflow

Figure 4.1 shows the test pattern that will cause overflow operation due to its large

energy. This kind of large energy signals is seldom used in MPEG/Audio coding

because it is a sound that grates on the ear and is not comfortable for hearing. That’s the

reason why most decoders only check the overflow at the output and just perform

saturation if it is overflow.

Figure 4.1 Test pattern with large energy and its frequency response.

 End of this subsection, we list some statistics of floating-point and fixed-point

operation. Table 2 compares the floating-point C code with the fixed-point assembly

code. As listed in Table 2, fixed-point assembly code provides very great improvement

in speed. Table 3 shows the comparison of memory size. As shown in Table 3, memory

size are greatly reduced.

52

Table 2 Fixed-point improvement of instructions per frame

 Floating-point
 C code

Fixed-point
Assembly code Improvement

Descaling 235418.14 95415.11 59.47%

AntiAlias 350568.59 7901.33 97.75%

FreqInv 35060.00 2128.00 93.93%

IMDCT 2044628.70 111715.95 94.54%

Synthesis 4706888.00 505220 89.27%

Table 3 Fixed-point improvement of program memory (word)

 Floating-point
 C code

Fixed-point
Assembly code Improvement

Descaling 827 112 86.46%

AntiAlias 571 39 93.17%

FreqInv 42 25 40.48%

IMDCT 3141 144 95.42%

Synthesis 163 126 22.70%

53

4.1.2 An Efficient Algorithm Implementation

Although there are many efficient implementations proposed for MDCT/IMDCT

and analysis/synthesis filter bank computation, these implementations need to unroll the

algorithm and use the memory size to interchange the time [31][32]. This thesis uses

another efficient implementation which is a good compromise between memory and

time. This method also fits the architecture of C54x DSP.

The IMDCT is defined as Equation (4.14) and has the even anti-symmetric

property as Equation (4.15) [33].

))12)(
2

12(
2

cos()(
1

2

0
∑

−

=

+++=

n

k
k kni

n
Xix π , for i = 0 ~ n-1 (4.14)









+=−−

−=−−

)
2

()1(

)()1
2

(

inxinx

ixinx
 , for

4
0 ni <≤ (4.15)

This is to say, IMDCT can be realized by calculating x(i) where
4

0 ni <≤ and

4
3

2
nin <≤ only. Additionally, we can reverse the sign of the particular window

coefficients which are performed after IMDCT. Figure 4.1 illustrates the efficient

operation for n=12 (short window).

54

w(0)
-w(5)
w(1)
-w(4)
w(2)

-w(3)

w(6)
 w(11)
w(7)

 w(10)
w(8)
w(9)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(10)

x(11)

x(9)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(10)

x(11)

x(9)

-1

-1

-1

4
0 ni <≤

4
3

2
nin <≤

1

1

1

Figure 4.2 Efficient IMDCT and windowing operation [33].

 In addition, there are some properties of cosine terms in (4.14) between short and

long window as Equation (4.16) shown.

))12)(
2

12(
2

(cos))12)(
2

12(
2

(cos +++=+++ kni
n

kmj
m LS

ππ (4.16)

for j = 0 ~ 11 i = 3j + 1

where:
cos S (x) are the coefficients for short window,
cos L (x) are the coefficients for long window.

Obviously, the coefficients for short window overlap the coefficients for long

window as Figure 4.3 shown. Inserting the coefficients of short window into long

window with specified index addressing also reduces the memory sizes

55

Long window
coefficients

Short window
coefficients

Figure 4.3 The overlap of coefficients for short and long windows.

Besides IMDCT, the synthesis filter bank implementation can also be efficient in

two parts. First part is realized in operations that are similar to the efficient IMDCT.

Second part is to skip some operations but still generate the correct outputs. In synthesis

filter bank, matrix operations as Equation (4.17) shown can be seen as an IMDCT

operation.

k
k

ik SNiV ∑
=

=
31

0
)((4.17)

where:

)
64

)12)(16cos((π++= kiNik , for i=0~63, k=0~31 (4.18)

The coefficients of Nik in Equation (4.17) also have the even anti-symmetric

property so V(i) can be expressed by Equation (4.19).

56















=

++=−−

=

−=−

∑
=

31

0
)(

)1
2

()1(

0)(

)()
2

(

k
kSiV

inVinV

iV

iVinV

 , for

48

1
4

0
16

4
0

=

−<≤
=

<≤

i

ni
i

ni

 (4.19)

This means that matrix operations can be realized by calculating V(i) where

4
0 ni <≤ and

4
31

2
nin ≤≤+ only. Therefore, this part can save many instruction

cycles.

In the second part, we skip the operation of building a 512 values U vector in

synthesis filter bank operation in Figure 2.20 and replace Equation (4.20) by Equation

(4.21). It implies that we can decrease instuction cycles and memories by skipping

building U vector and using another index method.

)32()32(
15

0

jiDjiUS
j

i ++=∑
=

 , for 310 ≤≤ i (4.20)

where U is from V vector by Equation (4.22)

)32()32(
15

0

jiDjiVS
j

i ++=∑
=

 , for 310 ≤≤ i (4.21)





++=++
+=+

)96128()3264(
)128()64(

jiVjiU
jiVjiU

 , for 80 <≤ i , 320 <≤ j (4.22)

Table 4 and Table 5 show the improvement of time and memory reduction in

IMDCT and synthesis filter bank by using the efficient algorithm.

57

Table 4 Efficient algorithm improvement of instructions per frame

 Original algorithm Efficient algorithm Improvement

IMDCT 111715.95 71803.64 35.73%

Synthesis 505220 356936 29.35%

Table 5 Efficient algorithm improvement of memory (word)

 Original algorithm Efficient algorithm Improvement

IMDCT 763 468 38.7%

Synthesis 2652 1143 56.9%

58

Figure 4.4 and Figure 4.5 show the percentage of execution instructions of IMDCT

and synthesis function relative to others without and with the efficient algorithm,

respectively. We can see that IMDCT and synthesis functoin reduce many instruction

cycles.

FreqInv
0%

IMDCT
12%

Descale
10%

Huff
20%

AntiAlias
1%

Scale
1%Else

1%

Synthesis
55%

Figure 4.4 Execution instructions without the efficient algorithm.

FreqInv
0% IMDCT

10%

Descale
13%

Huff
25%

Else
2%

Scale
1%

AntiAlias
1%

Synthesis
48%

Figure 4.5 Execution instructions with the efficient algorithm.

59

4.1.2 Multi-Task, Multi-Thread Management

The software required in typical embedded microprocessor systems is comprised

of two general components, the application software and the system software.

Application software is what programmers usually implement first, e.g. audio coding or

speech coding algorithms. Under this layer is system software which is responsible for

managing the system resources for application software. System resources include the

hardware devices on the target platform and the microprocessor. Take the MPEG/Audio

Layer 3 decoder as an example, the decoding algorithm is application software and

reading the input stream and playing the output PCM samples are the system software,

as Figure 4.5 shown.

In order to operate correctly in real-time, both of application software and system

software have their own task cycles and must meet their deadlines respectively. For

example, application software has to decode one frame in a limited period while system

software has to read-in bitstream according to the bit-rate of bitstream and send-out

each audio sample in the original sampling period. To realize the mechanism, we

implement the real-time system by multi-task with multiple threads.

60

Decoding Algorithm
(Application Software)

System Software

DSP I/O
peripheralsMemory

Figure 4.6 Embedded system software components [34].

In simple systems, the system software consists of basic hardware initialization,

peripheral access functions and hardware interrupt service routines. Systems that are

more complex require real-time scheduling of the DSP to ensure correct operation.

Furthermore, as applications require concurrent access to hardware resources such as

the DSP, memory, or I/O, the need for an efficient resource manager and scheduler

becomes paramount. Managing these resources is precisely the benefit of using

DSP/BIOS II. DSP/BIOS II provides system services to manage the DSP system

hardware components and to provide applications with services that manage the DSP

utilization.

DSP/BIOS II® is a kernel that provides run-time services which developers use to

build TI DSP applications and manage application resources. DSP/BIOS II effectively

extends the DSP instruction set with real-time, run-time kernel services that form the

61

underlying architecture, or infrastructure, of real-time DSP applications. DSP/BIOS

provides many features for program development [35]:

� A program can dynamically create and delete objects that are used in special

situations.

� The threading model provides thread types for a variety of situations. Hardware

interrupts, software interrupts, tasks, idle functions and periodic functions are all

supported.

� Structures to support communication and synchronization between threads are

provided. These include semaphores, mail boxes and resource locks.

� Two I/O modules are supported for maximum flexibility and power. Pipes are used

to support simple cases in which one thread writes to the pipe and another reads

from the pipe. Streams are used for more complex I/O and to support device

drivers.

� The DSP/BIOS plug-ins allow real-time monitoring of program behavior.

In many DSP applications, the data flow from input to output is often a continuous

flow of data blocks or buffers. The DSP/BIOS II data pipes (PIP) and data streams (SIO)

modules are well suited to manage streaming data. Streaming data applications require

management of the flow of data buffers throughout the application. DSP/BIOS II data

pipes and data streams are kernel objects optimally designed to perform these tasks.

Both module transfer buffers within the pipe or stream by copying pointers rather than

by copying data between buffers. In general, the pipe module supports low-level

communication, while the stream module supports high-level, device-independent I/O.

62

Except PIP and SIO modules, DSP/BIOS also provide other modules including

HWI, SWI, TSK, MBX and DEV which will be used with PIP or SIO. HWI (hardware

interrupt module) is executed after a hardware interrupt triggered in order to perform a

critical task that is subject to a deadline. HWIs are the threads with the highest priority

in a DSP/BIOS application. SWI (software interrupt module) is triggered by calling

SWI functions from the program. Software interrupts provide additional priority levels

between hardware interrupts and the background tasks. TSK (multitasking module)

dynamically schedules and preempts tasks based on the task’s priority level and the

task’s current execution state. Lower level threads can be suspended during execution

until necessary resources are available. MBX (mailbox module) is used for inter-task

communication and synchronization. It can pass messages from one task to another.

MBX can also be combined into SWI module to synchronize a software interrupt. DEV

(device driver module) is software module that manages a class of devices. For more

information about these modules, please refer to [34][35].

In the following, we will realize the implementation of PIP and SIO both and

compare the difference between PIP and SIO.

� PIP Implementation

To transfer data between the ISR and the application, we use PIP module first. One

data pipe transfers data from the ISR to the application, the other transfers full data to

the ISR for output.

In Figure 4.7, the decode() function attached to the DSP/BIOS II SWI thread

(echoSwi) performs the audio processing. The audio processing thread activates only

when both a full block of data and an empty block of data are available. To synchronize

63

these events, we use the echoSwi’s mailbox. The initial value of the SWI mailbox is set

to 3, which sets the first 2 bits in the SWI mailbox to 1. When both of these bits become

0, the SWI thread activates to perform the process of decoder.

Both data pipes signal the software interrupt using SWI_andn() calls to their

assigned bits in the SWI mailbox to synchronize the process. The input data pipe will

signal the echoSwi when the ISR has a block and it is available for processing by

calling SWI_andn(2) to clear bit 1 in the SWI mailbox. Likewise, the output data pipe

will signal the audioSWI when an empty block of data is available for the application to

fill by calling SWI_andn(1) to clear bit 0 in the SWI mailbox.

SWI
Audio Processing
Software Interrupt
(echoSwi thread)

HWI
ISR

Data
Bus

Decoder function

Audio
CODEC

Input Pipe
PIP

PIP_rxPrime

Output Pipe
PIP

PIP_txPrime

Get Data
x

Put Data
yy=decode(x)

audioSwi mailbox
1 1

OUTPUT
data path

INPUT
data path

synchronization
SWI_andn() synchronization

SWI_andn()

SWI thread calls
the audio function

Memory0101001
DMA

McBSP

Figure 4.7 Architecture of multi-task using PIP module [34].

64

In Figure 4.8, execution graph, we can see that echoSwi has higher priority and

preempts the other threads. After the echoSwi finishs its thread, other threads restitute to

execute. Once echoSwi is ready, preemption occures again.

Figure 4.8 Execution graph of PIP implementation.

� SIO Implementation

In addition to PIP implementation, we use SIO module which is the other

mechanism to transfer data between the ISR and application. The SIO provides a

high-level device independent I/O mechanism for use with TSK threads. SIO goes

beyond PIP by offering the ability to create new SIO objects at run-time. To provide

this ability, SIO has its own device driver model, DEV. A small set of device specific

functions, such as open, close, and buffer management, is implemented and accessed by

a SIO object through a function table.

In this implementation, application software is in the echoTsk() task, as Figure 4.8

shown. This task creates one input stream and one output stream at run-time. Task will

be suspended when streams generate software interrupt since SWI has higher priority

65

than TSK. Input stream will generate software interrupt when sends data to decoder()

while output stream will generate software interrupt when sends out data from decoder()

function.

TSK
Audio Processing

Task module
(echoTsk)

DEV

Decoder function
Input Stream

SIO
DSS_rxPrime

Output Stream
SIO

DSS_txPrime

Get Data
x

Put Data
yy=decode(x)

OUTPUT
data path

INPUT
data path

synchronization
SIO_get()

synchronization
SIO_put()

HWI
ISR

Data
Bus

Audio
CODECMemory0101001

DMA

McBSP

Figure 4.9 Architecture of multi-task using SIO module.

In Figure 4.9, we can see that KNL_swi has higher priority than echoTsk and

preempts it when KNL_swi is ready. TSK_idle will run when echoTsk is finished and

CPU has more execution power.

66

Figure 4.10 Execution graph of SIO implementation.

Consequently, DSP/BIOS II offers two basic constructs for handling data I/O in a

real time system: data streams and data pipes. They differ in their approach to solving

the problem, but they both provide known, solid, deterministic methods of handling data

I/O. Table 6 compares these two modules in more detail. Figure 4.11 and 4.12 shows

the CPU load graph of PIP and SIO mechanism respectively. Note that CPU load of PIP

has lighter load than SIO’s.

67

Table 6 Difference between PIP and SIO. [35]

Pipes Streams

Programmer must create own driver
structure

Provides a more structured approach to
device-driver creation

PIP functions are non-blocking SIO are blocking functions and will wait
until a buffer is available

Uses less memory and is generally faster More flexible; generally simpler to use and
slower.

Pipes must created statically before
run –time

Streams may be created either at run-time
or statically.

Easy interface with SWI and TSK Good level of hardware abstraction

Ability to have multiple buffers Synchronization mechanism with TSK

Designed to be used by only one SWI/ TSK Highly flexible

Can only work on one frame at a time Can service multiple TSK

Frame sizes are fixed Can prototype with a different SIO/ DEV

68

Figure 4.11 CPU load graph of PIP implementation.

Figure 4.12 CPU load graph of SIO implementation.

69

4.2 Verification

The performance of this decoder is shown in Table 7. For different sampling rate

and bit-rate which means the different compression ratio, the performance varies in

small range. The SNR is defined by Equation 4.23 and Error Bit is derived by Equation

4.24.

∑

∑
−

×= 2

2

10])[][(
][

log10][
iPCMiPCM

iPCM
dBSNR

fixedfloat

fixed (4.23)

∑ −=)][][(log1_ 2 iPCMiPCM
N

bitError floatfixed (4.24)

where we define log2(0)=0. N = 1152.

The MIPS (Million Instruction Per Second) in Table 7 is the required MIPS to decode a

particular bitstream if the DSP is running at 100 MIPS.

70

Table 7 SNR, Error_bit ,MIPS of various compression ratio.

sampling
rate (kHz)

bit rate
(kbps)

Compression
Ratio

SNR (dB)
(v.s floating) Error Bit MIPS

64 8.0 49.92 3.7 22.83

128 4.0 48.38 3.8 28.49 32

160 3.2 48.62 4.2 30.40

64 11 48.57 3.2 27.94

128 5.5 48.96 3.3 34.16 44.1

160 4.4 48.74 3.4 37.02

64 12.0 50.67 3.1 29.57

128 6.0 49.15 3.2 35.80 48

160 4.8 49.02 3.4 38.66

In Figure 4.13, the output PCM waveform generated by fixed-point decoder is

almost the same with the output of floating-point decoder. The errors of fixed-point and

floating-point are very small.

71

Figure 4.13 Waveform comparison between floating and fixed-point decoder.

Finally, we conclude with the performance of the most popular format in this

chapter. Decoding the most popular format – 44.1 kHz sampling rate, 128 Kbps bitrate,

compression ratio 5.5:1, gives SNR 48.96 dB, error_bit 3.3 bits and 34.16 MIPS. The

MIPS corresponds to 34.16% of the maximum computation capacity of TMS320C5402

DSP. The program memory and data memory used in the decoder are about 7.1 kwords

and 17.2 kwords, respectively.

72

C h a p t e r 5

Conclusion and Future Works

5.1 Conclusion

This thesis describes the MPEG/Audio Layer 3 coding algorithm and presents a

real-time decoder implementation on a fixed-point DSP chip. The MPEG/Audio Layer

3 provides high compression ratio of audio signal with good sound quality. The DSP is

software programmable and offers IDE (Integrated Development Environment) tools

which we can develop and debug the algorithm quickly and easily in the programming

stage.

In implementation portion, using the fixed-point operation increases the execution

speed and reduces the memory size. Coding with assembly language also achieves these

goals. In addition, we adopt several optimum methods and an efficient algorithm to

improve performance. Finally, we realize real-time decoder with the PIP and SIO

module in multi-task and multi-thread framework. The implemented decoder uses 7.1

kwords of program memory and 17.2 kwords of data memory. It consumes about 34%

computation power of C54x DSP chip. This decoder also provides the SNR more than

73

45dB while comparing to floating-point decoder and sacrifices about 4-bits resolution

for fixed-point operation.

5.2 Future Works

With the rapid upgrowth of audio compression knowledge, many other audio

compression formats are developed and realized. Dolby AC-3 [36], MPEG-2 Advanced

Audio Coding (AAC) [37], Microsoft® Windows Media™ Audio (WMA) [38] are all

the good audio coding technology compare with MPEG/Audio Layer 3 and booming in

the world of audio coding.

Appling the software programmable characteristic of DSP, we can develop a

multi-format decoder by “switching the decoder”. When accessing particular format,

switching to corresponding decoder makes us decode the file without adding another

hardware like the ASIC do.

R-1

R e f e r e n c e s

[1] Audio Engineering Handbook, K. Blair Benson. Benson, McGraw-Hill Book Company,
1988 ISBN 0-07-004777-4

[2] E.F. Schroder and W. Voessing, “High Quality Digital Audio Encoding with 3.0
Bits/Sample using Adaptive Transform Coding,” in Proc. 80th Conv. Aud. Eng. Soc.,
preprint #2321, Mar. 1986.

[3] K. Brandenburg, “OCF- A New Coding Algorithm for High Quality Sound Signals,” in
Proc.ICASSP-87, pp.5.1.1-5.1.4, May 1987.

[4] J. Johnston, “Transform Coding of Audio Signals Using Perceptual Noise Criteria,” IEEE
J. Sel. Areas in Comm., pp. 314-323, Feb. 1988.

[5] Y. Mahieux, et al., “Transform Coding of Audio Signals Using Correlation Between
Successive Transform Blocks,” in Proc. Int. Conf. Acous., Speech, and Sig. Process.
(ICASSP-89), pp. 2021-2024, May 1989.

[6] K. Brandenburg, et al., “ASPEC: Adaptive Spectral Entropy Coding of High Quality
Music Signals,” in Proc. 90th Conv. Aud. Eng. Soc., preprint #3011, Feb. 1991.

[7] Y.F. Dehery, et al., “A MUSICAM Source Codec for Digital Audio Broadcasting and
Storage,” in Proc. ICASSP-91, pp.3605-3608, May 1991.

[8] G. Theile, et al., “Low-Bit Rate Coding of High Quality Audio Signals,” in Proc. 82nd
Conv. Aud. Eng. Soc., preprint #2432, Mar. 1987.

[9] Meshkat, S., and I. Ahmed, “Using DSPs in AC Induction Motor Drives,” Control
Engineering, Feb. 1988.

[10] Reimer, J.B., and G.A. Frantz, “Customization of a DSP Integrated Circuit for a Customer
Product,” Transactions on Consumer Electronics, USA, Aug. 1988.

[11] Papamichalis, P., and J. Reimer, “Implementation of the Data Encryption Standard Using
the TMS32010,” Digital Signal Processing Applications, 1986.

[12] Reimer, J., and A. Lovrich, “Graphics with the TMS32020,” WESCON/85 Conference
Record, USA, 1985.

R-2

[13] Casale, S., R. Russo, and G. Bellina, “Optimal Architectural Solution Using DSP
Processors for the Implementation of and ADPCM Transcoder,” Proceedings of
GLOBECOM ’89, pages 1267-1273, Nov. 1989.

[14] Reimer, J., G. Benbassat, and W. Bonneau Jr., “Application Processors: Making PC
Multimedia Happen”, Silicon Valley PC Design Conference, Jul. 1991.

[15] Charles D. Murphy and K. Anandakumar, “Real-Time MPEG-1 Audio Coding and
Decoding on a DSP Chip”, IEEE, Trans. on Consumer Electronics, Vol.43, No.1, Feb.
1997.

[16] ISO/IEC JTC1/SC29/WG11 MPEG, IS11172-3 “Information Technology - Coding of
Moving Pictures and Associated Audio for Digital Storage Media at up to About
1.5Mbit/s, Part 3: Audio” 1992.

[17] K. Brandenburg and H. Popp, “An introduction to MPEG Layer-3”, Fraunhofer Institut
fur Integrierte Schaltungen(IIS), EBU TECHNICAL REVIEW, Jun. 2000.

[18] P.P. Vaidyanathan. “Quadrature mirror filter banks, m-band extensions and
perfect-reconstruction techniques.” IEEE ASSP Maganize, Jul. 1987.

[19] Davis Pan, “A Tutorial on MPEG/Audio Compression”, IEEE Multimedia, Vol. 2, No. 2,
Summer 1995.

[20] J. H. Rothweiler, “Polyphase Quadrature Filters – a New Subband Coding Technique,”
Proc of the Int. Conf. IEEE ASSP, 27.2, pp1280-1283, Boston 1983.

[21] J. Princen and A. Bradley, “Analysis/Synthesis Filterbank Design Based on Time Domain
Aliasing Cancellation,” IEEE Trans. On Acoust. Speech, and Signal Process. Vol.
ASSP-34, pp.1153-1161, 1986.

[22] Terhardt, E., “Calculating Virtual Pitch,” Hearing Research, pp. 155-182, 1, 1979.

[23] E. Ambikairajah, A. G. Davis and W. T. K. Wong, “Auditory masking and MPEG-1 audio
compression”, Electronics and communication engineering journal, Aug. 1997.

[24] K Salomonsen, S Søgaard, E P Larsen, “Design and Implementation of an MPEG/Audio
Layer III Bitstream Processor” 1997.

[25] TMS320C5402 DSK Help (SPRH075A) Texas Instruments.

[26] TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals (SPRU131) Texas
Instruments, 1999.

[27] Code Composer Studio User’s Guide (SPRU328) Texas Instruments, 2000.

[28] TMS320C54x Code Composer Studio Tutorial (SPRU327A) Texas Instruments, 1999.

R-3

[29] Jason Jiang, “General Guide to Implement Logarithmic and Exponential Operations on a
Fixed-Point DSP”, TI Application Report, Dec. 1999.

[30] 胡竹生, 賴鴻志, 張勝凱, ”TMS320C54xx DSP 晶片原理與應用”, 全華, 2000.

[31] B. G. Lee, “ A new Algorithm to Compute the Discrete Cosine Transform.” IEEE Trans.
Acous., Speech, and Signal. Processing., vol.ASSP-32, pp. 1243-1245, Dec. 1984.

[32] Vladimir B. and K. R. Rao, “ An Efficient Implementation of the Forward and Inverse
MDCT in MPEG Audio Coding”, IEEE Signal processing letters, vol. 8, No. 2, Feb.
2001.

[33] Tadashi Sakamot, et al., “A Fast MPEG-AUDIO Layer III Algorithm for A 32-Bit
MCU .” in IEEE Trans. Consumer Electronics., vol. 45, No.3, Aug. 1999.

[34] Andy The’ and David W. Dart, “How to Get Started With DSP/BIOS II.” Application
Report (SPRA697), Texas Instruments. Oct. 2000.

[35] TMS320C54x DSP/BIOS User’s Guide, Texas Instruments, 2000.

[36] C. Todd, et. Al., “AC-3: Flexible Perceptual Coding for Audio Transmission and
Storage,” in Proc. 96th Conv. Aud. Eng. Soc., preprint #3796, Feb. 1994.

[37] ISO/IEC 13818-7 “Information Technology – Generic Coding of Moving Pictures and
Associated Audio Information, Part 7: Advanced Audio Coding” 1997.

[38] http://msdn.microsoft.com/workshop/imedia/windowsmedia/Tools/MSAudio.asp

[39] TMS320C54x Assembly Language Tools User’s Guide,(SPRU102) Texas Instruments,
1999.

[40] Noll, P. “MPEG digital audio coding”,IEEE Signal Processing Magazine , Volume: 14
Issue: 5 , Page(s): 59 –81, Sep. 1997

[41] Shlien, S. “Guide to MPEG-1 audio standard” Broadcasting, IEEE Transactions on ,
Volume: 40 Issue: 4 , Page(s): 206 –218, Dec. 1994

[42] T. Sakamoto, M. Taruki, and T. Hase, “A FAST MPEG-AUDIO LAYER III
ALGORITHM FOR A 32-BIT MCU”, IEEE Trans. on Consumer Electronics, Vol.45,
No.3, Aug. 1999.

[43] Davis Pan, “A Tutorial on MPEG/Audio Compression”, IEEE Multimedia, Vol. 2, No. 2,
Summer 1995.

